Mon éditorial pour aujourd’hui
Je pense au contexte de mon modèle évolutionniste de changement technologique. Je peux représenter les changements technologiques dans l’économie mondiale comme trois évolutions parallèles, en quelque sorte : celle du capital, celle du travail, ainsi que celle de l’argent (voyez “Money, essentially doesn’t give a s*** “ pour une explication détaillée). A chaque fois, la logique de l’hypothèse de base est similaire : chaque structure sociale distincte produit du changement technologique comme sélection faite par un élément femelle (capital physique, travail, ou argent liquide), dans un ensemble d’inventions possibles, et par la suite de cette sélection, des technologies nouvelles naissent. Ce qui évolue donc, c’est soit le capital physique, soit le marché et l’organisation du travail, soit le système monétaire.
En fait, j’ai tenté de mettre tous les trois organismes-mères dans le même modèle économétrique, pour voir leur poids relatif. C’est une procédure analytique qui est en fait à la limite de l’acceptable en statistique. Je sais que capital, travail et argent liquide sont corrélés dans leur incidence à l’intérieur du même système économique. C’est l’une des raisons pour qu’on appelle cette structure un système. Si je fourre ces trois valeurs agrégées dans la même équation, j’aurai, à coup sûr, ce qu’on appelle la cointégration entre variables explicatives. En principe, c’est une chose qu’on devrait éviter. Néanmoins, si je fais ça, je peux voir si l’un de ces facteurs est définitivement plus fort que les autres dans son influence sur la variable expliquée, qui est, en l’occurrence, le nombre de demandes de brevet dans un pays donné, en une année donnée.
Alors, j’avance, pas à pas, le long de cette frontière de l’acceptable, et je pose l’hypothèse que le changement technologique est une évolution conjointe des structures capitalistes, organisations d’emploi et systèmes monétaires, sous l’impulsion de sélection que ces trois types de structures sociales font dans l’ensemble de technologies nouvelles, possibles à développer sur la base d’idées scientifiques. Bien sûr, le lecteur attentif voit déjà la grosse lacune dans ce raisonnement : comment évoluent les structures qui génèrent les inventions, donc toute la sphère de recherche et développement ? Eh bien, l’idée un peu simpliste que j’ai est que toute organisation scientifique est une combinaison de capital physique (labos), travail (les gens vêtus de blanc) et argent liquide (comptes bancaires de ces gens vêtus de blanc). C’est simpliste, je l’admets, et néanmoins je reste bien dans le cadre de la théorie évolutionniste, là : les organismes mâles, qui génèrent le flot de l’information génétique indispensable à la reproduction, sont de la même espèce que les organismes femelles, donc ils ont la même substance génétique. Les organismes mâles ont juste une fonction différente.
De toute façon, si je veux faire ce test économétrique à la limite de l’acceptable, je reformule l’hypothèse ci-dessus comme une looongue équation : ln(Nombre de demandes de brevet) = a1*ln(Capital physique) + a2*ln(Offre agrégée de travail, en heures travaillées) + a3*ln(Offre agrégée d’argent) + a4*ln(Taux d’amortissement) + a5*ln(Consommation d’énergie par tête d’habitant) + a6*ln(Densité de population) + a7*ln(Déficit alimentaire) + constante résiduelle. Une remarque, avant que je passe au test économétrique. Vous pouvez vous souvenir qu’à un moment donné j’ai ajouté la part de rémunération agrégée de travail dans le PIB, comme variable explicative à côté du capital physique, car elle s’est avérée significativement corrélée avec la constante résiduelle de l’un des modèles transitoires que j’avais utilisé. Ceci est vrai, mais cette fois, j’ajoute l’offre agrégée de travail dans l’équation et cette variable-là est inévitablement corrélée avec la part des salaires dans le PIB : cette dernière résulte soit du nombre d’heures travaillées (offre de travail), soit du niveau de salaire horaire moyen. J’ai donc deux valeurs agrégées qui sont évidemment liées l’une à l’autre et qui, en même temps, décrivent largement la même chose. C’est une redondance statistique qui, d’autre part, n’apporte aucune distinction qualitative, comme celle entre le capital et le travail. J’ai donc éliminé la part des salaires dans le PIB et je laissé le travail agrégé, comme nombre total d’heures travaillées en une année dans l’économie du pays donné.
De toute façon, je teste cette équation dans ma base des données composite, faite de Penn Tables 9.0 (Feenstra et al. 2015[1]) et de données additionnelles de la Banque Mondiale. Et comme je m’apprête à tester, vlam !, y a u truc qui me cogne droit entre les yeux : dans les pays développés, le déficit alimentaire est zéro et comme le logarithme naturel de zéro, ça n’existe pas. Je ne peux pas appliquer cette équation, avec le déficit alimentaire dedans, aux pays qui génèrent, à première vue, deux tiers du nombre total de demandes de brevet dans ma base de données. En plus, comme j’avais déjà inclus le déficit alimentaire dans d’autres modèles étudiés plus tôt, il faudra que je revienne sur mes pas. J’avais en fait testé ma fonction évolutive de sélection dans un échantillon restreint des pays, où toutes les variables sont bien répertoriées et le déficit alimentaire est non-nul : Argentine, Brésil, Chile, Colombie, Equateur, Inde, Indonésie, Mexique, Pakistan, Pérou, Philippines, Corée du Sud, République Sud-Africaine, Thaïlande, Turquie. Zut ! Je déteste ces moments quand je découvre que je suis décalé de la réalité.
Bon, on se calme. Je me calme. D’abord, il faut évaluer l’échelle des dégâts. Sans faire de retours hâtifs en arrière, je prends mon modèle général, celui dont l’équation est présentée ci-dessus, deux paragraphes en arrière, et je la fais évoluer. Je la mute. La mutation richarde englobe les pays sans déficit alimentaire répertorié est donc sans déficit alimentaire dans le modèle. Taille d’échantillon : n = 1 404 observations, responsables pour 14 206 819 demandes de brevet au total. Le modèle explique R2 = 0,734 de la variance observée dans ce même nombre des demandes de brevet, d’année en année et de pays au pays. La mutation malnutrie de mon équation raconte le sort des pays avec déficit alimentaire officiel et officiellement inclus dans le modèle. Ces pays-là ont généré quelques 6 550 000 demandes de brevets, dans un échantillon de n = 317 observations valides, qui explique R2 = 0,812 de variance du nombre de demandes de brevets.
Malgré la taille très disparate de deux échantillons, les deux rendent une capacité explicative très similaire. Ça promet. Allons voir les paramètres. Alors, le modèle valide pour les pays sans déficit alimentaire répertorié, est détaillé ci-dessous :
Variable | Coefficient | Erreur standard | Statistique t | p-valeur |
ln(Capital physique) | 0,532 | 0,093 | 5,688 | 0,000 |
ln(Taux d’amortissement) | 1, | 0,244 | 4,092 | 0,000 |
ln(Consommation d’énergie par tête d’habitant) | 1,425 | 0,08 | 17,728 | 0,000 |
ln(Densité de population) | 0,049 | 0,023 | 2,126 | 0,034 |
ln(Offre agrégée de travail, en heures travaillées) | 0,654 | 0,059 | 11,131 | 0,000 |
ln(Offre agrégée d’argent) | -0,223 | 0,055 | -4,097 | 0,000 |
constante résiduelle | -11,818 | 0,874 | -13,528 | 0,000 |
En revanche, le modèle appliqué aux pays avec déficit alimentaire officiel se présente comme dans le tableau suivant :
Variable | Coefficient | Erreur standard | Statistique t | p-valeur |
ln(Capital physique) | 0,176 | 0,252 | 0,7 | 0,484 |
ln(Taux d’amortissement) | -1,539 | 0,566 | -2,721 | 0,007 |
ln(Consommation d’énergie par tête d’habitant) | 1,755 | 0,142 | 12,339 | 0,000 |
ln(Densité de population) | 0,497 | 0,078 | 6,354 | 0,000 |
ln(Déficit alimentaire) | -0,349 | 0,067 | -5,19 | 0,000 |
ln(Offre agrégée de travail, en heures travaillées) | 0,537 | 0,16 | 3,369 | 0,001 |
ln(Offre agrégée d’argent) | 0,308 | 0,197 | 1,563 | 0,119 |
constante résiduelle | -23,754 | 2,053 | -11,568 | 0,000 |
Bon, maintenant je suis bien sage et j’applique la méthode de John Stuart Mill : similitudes d’une part, différences de l’autre. La similitude la plus frappante est l’importance de la consommation d’énergie par tête d’habitant. Plus exactement, ce sont deux variables – la consommation d’énergie par tête d’habitant et le taux d’amortissement – qui, de façon un peu surprenante, deviennent les musiciens de front de l’ensemble. Leurs coefficients de régression, combinés avec leurs p-valeurs respectives (qui mesurent la solidité de la corrélation), leur donnent une dominance très visible sur d’autres variables. Si je considère cette équation économétrique comme un modèle économique, c’est un modèle basé sur deux équilibres relatifs au nombre des demandes de brevet : l’équilibre énergétique et celui du cycle de vie des technologies. Là, une fois de plus, je me sens obligé à faire ce petit échange d’idées avec moi-même : comment est-ce possible, avec toute cette pression sur l’économie d’énergie, que le système économique tende, en fait, vers la maximisation de consommation d’énergie ?
Oui, je sais, ça pourrait être un de ces trucs purement statistiques, un concours d’accidents numériques sans signification véritable. J’admets que c’est possible, seulement ça arrive dans chaque modèle que j’ai testé durant la semaine dernière. Quelle que soit le cocktail des variables explicatives pour déterminer la variance du nombre des demandes de brevet, la consommation d’énergie toujours vient avec un coefficient positif et une p-valeur hautement significative. Plus on consomme d’énergie par tête d’habitant, plus on invente. Il y a un truc qui me vient à l’esprit, maintenant, une sorte d’observation sociologique approximative : il est bien vrai que pratiquement chaque technologie nouvelle inventée de nos jours est plus économe en énergie que ses prédécesseurs mais en même temps nous accumulons de plus en plus de ces technologies. A un moment donné, le ménage moyen avait un frigo, une télé et une machine à laver. Un frigo plus économe est arrivé, tout comme une machine à laver avec une classe énergétique meilleure. Seulement, entretemps, il y a eu le sèche-linge, le climatiseur et deux ordinateurs qui viennent en scène etc. Plus économe, chacune de ces bestioles prise séparément, mais leur compilation en un même endroit pompe en haut la consommation totale des ménages.
Plus on consomme d’énergie par tête d’habitant, plus on invente de technologies nouvelles. Même s’il y a l’impératif d’économiser l’énergie, moins d’énergie consommée pourrait bien vouloir dire moins d’inventions. Ça a tout l’air d’un cercle vicieux. Maintenant, je passe au cycle de vie des technologies, qui semble jouer des rôles opposés dans mes deux échantillons. Lorsque l’habitant moyen est repu, la fonction évolutive de sélection génère d’autant plus d’inventions brevetables que le cycle de vie des technologies en place est court. Plus vite ça vieillit, plus on invente du nouveau. C’est logique et c’est comment les deux tiers d’inventions brevetables ont l’air de naître. En revanche, lorsque l’habitant statistique (qui n’existe pas, bien sûr) pourrait bien profiter d’un repas de plus dans la journée, ça fonctionne à l’envers : plus vite les technologies en place vieillissent, moins on en invente de nouvelles. La seule explication logique que je vois est que dans les pays avec déficit alimentaire, la dépréciation des technologies en place prend littéralement le pain de la bouche des chercheurs et limite la capacité de générer des inventions. Un mâle malnutri, qui en plus doit tenir le pas à un stress social prononcé, produit moins de spermatozoïdes : fait scientifique prouvé.
Il y a une deux autres différences intéressantes. La majorité d’inventions brevetables, celles générées dans les pays sans déficit alimentaire, s’associe avec un équilibre prévisible du ratio « capital par demande de brevet » et n’aime pas trop l’offre d’argent. Comme s’il y avait une contradiction entre la création de crédit et celle d’inventions brevetables. En revanche, dans l’échantillon des pays avec déficit alimentaire, la création de technologies nouvelles, exprimées comme demandes de brevet, s’accompagne d’un équilibre plutôt aléatoire du ratio « capital par demande de brevet » et semble aller bien avec la création de crédit.
Ouff, je vois que je n’en ai pas fini avec ce truc d’évolution.
[1] Feenstra, Robert C., Robert Inklaar and Marcel P. Timmer (2015), “The Next Generation of the Penn World Table” American Economic Review, 105(10), 3150-3182, available for download at http://www.ggdc.net/pwt
One thought on “Je n’en ai pas fini avec ce truc d’évolution”