Deux ans après la mort

Un petit éditorial de ma part

Je crois qu’hier, dans ma mise à jour en anglais ( “Lazy Sunday, watching the clouds” ), j’ai enfin cerné les hypothèses que je voudrais développer et prouver dans mon article sur l’application des modèles évolutionnistes à l’étude des changements technologiques. Les hypothèses, ce n’est pas facile à formuler, au moins si j’ai l’intention de les vérifier. Alors, je peux formuler trois hypothèses, que je trouve à la fois possibles à vérifier et liées à ce truc d’évolutionnisme. Hypothèse no. 1 : L’innovation contribue à réduire le déficit alimentaire. Hypothèse no. 2 : Le nombre des demandes de brevet est significativement déterminé par la quantité de facteurs de production – capital et travail – couramment engagés. Hypothèse no. 3 : des sociétés distinctes se caractérisent par une proportion distincte entre le nombre des demandes de brevet et la quantité des facteurs de production – capital et travail – couramment engagés.

En comparaison de mes réflexions passées, ces hypothèses peuvent sembler bien sèches, même simplistes. Eh bien, c’est le rasoir d’Ockham au boulot. J’ai revu les faits empiriques que je peux citer comme preuve de ce que j’avance, j’ai essayé de formuler une signification commune de ces faits et voilà ce que j’ai obtenu. Vous pouvez vous demander qu’est-ce que j’ai fait de toute cette réflexion évolutionniste. Alors, tout ce chemin de raisonnement était justement un chemin de raisonnement, une expression plus ou moins intelligible de mes intuitions. Dans le langage strict de Milton Friedman, que j’apprécie beaucoup par ailleurs, ce sont des hypothèses spéculatives. J’ai comme une petite intuition que le changement technologique observable dans l’économie mondiale est un processus évolutionniste. Si je décide de publier cette idée, à la fois les critiques et les enthousiastes de cette idée viendront tôt ou tard à ce moment du haussement des épaules : « Ouais, c’est chouette. Génial, même. Alors, qu’est-ce que ça prouve, exactement ? Si, par exemple, nous sommes au Kenya, quelle serait la différence dans leur politique d’investissement en technologies nouvelles, du point de vue de votre modèle ?». C’est précisément dans un désir de devancer une telle question que je me suis concentré sur les hypothèses énumérées ci-dessus. L’avantage réside dans l’ampleur du champ d’applications possibles. Si je présente une preuve convaincante de ces hypothèses, et si j’équipe ma preuve empirique avec une version élégante du raisonnement que vous avez pu suivre sur mon blog durant ces dernières semaines, je démontrerai que le raisonnement évolutionniste est apte à générer un outil de prédiction, qui peut aider à comprendre comment l’innovation peut aider à sortir de la pauvreté.

Comme je suis cette piste de distinction entre la spéculation intellectuelle et les preuves empiriques, je suis retourné à un classique : le révérend Thomas Bayes et son essai posthume sur le calcul de probabilité (Bayes, Price 1763[1]). Voilà une histoire intéressante, lourde en conséquences. En Décembre 1763, monsieur Richard Price adresse une lettre à John Canton qui était alors, selon toute vraisemblance, le rédacteur en chef ou le rédacteur adjoint d’une revue prestigieuse intitulée « Philosophical Transactions of the Royal Society ». Dans cette lettre, Richard Price communique qu’en classant les notes de son ami Thomas Bayes, après la mort de celui-ci, il eut trouvé un essai extrêmement intéressant. Richard Price en lui-même était un personnage extrêmement intéressant (lisez plus, par exemple, ici : https://www.york.ac.uk/depts/maths/histstat/price.pdf ) et il était aussi intéressant de constater qu’il a soumis cet essai de Thomas Bayes à la Royal Society deux ans après la mort de son ami. Qu’était-il de si important dans cette œuvre ? Essayons de reconstruire le chemin de raisonnement qui a donné naissance à ce qu’on appelle aujourd’hui la statistique Bayésienne.

Je procède donc de ma manière préférée et je saute jusqu’à la fin dudit essai. Voilà ce qu’écrit Thomas Bayes dans la conclusion : « Ce qui recommande le plus la solution contenue dans cet essai est qu’elle est complète dans ces cas où l’information est la plus voulue et où la solution de Mr de Moivre du problème inverse peut donner peu ou pas de direction du tout ; je veux dire dans tous les cas où p ainsi que q n’ont pas de magnitude considérable. Dans d’autres cas, lorsque p ainsi que q sont très considérables, il n’est pas difficile de percevoir la véracité de ce qui a été démontré, donc qu’il y a des raisons de croire en général que les chances de l’occurrence d’un évènement sont aux chances de sa défaillance dans le même ratio que celui de p au q. Néanmoins nous serons grandement dupes si nous jugeons de cette manière lorsque p ou q sont petits. Et ainsi dans de tels cas les Données ne sont pas suffisantes pour découvrir la probabilité exacte d’un évènement, quoi qu’il est plausiblement possible de découvrir les limites entre lesquelles il est raisonnable de penser qu’il se trouve, ainsi qu’il est possible de déterminer le degré d’assentiment dû à toute conclusion ou assertion relative à ces limites ».

 Voilà donc que le révérend Thomas Bayes expose sa manière d’explorer les évènements à occurrence peu fréquente. Voulait-il établir une preuve éclairée de l’existence de du Dieu ? Possible. Voyons donc comment il s’y prend. Je passe directement au contenu de l’essai lui-même et je n’entre pas, pour le moment, dans les détails de la préface écrite par Richard Price dans sa lettre. Juste une remarque en passant. A l’école, on a été habitués à voir p et q comme des probabilités. Ici, dans la notation originale de Thomas Bayes, ce sont des nombres d’essais, pas des probas. Nous parlons donc des cas, ou le nombre d’essais est tellement faible qu’il est dur de calculer les probabilités classiques, comme P/N.

Thomas Bayes pose un problème simple : « Etant donné le nombre des fois quand un évènement inconnu s’est passé ou a failli de se passer ; ayant comme requis que la probabilité de son occurrence dans un essai unique se trouve quelque part parmi deux degrés de probabilité qui peuvent être nommés ». Ce qui intrigue tout de suite dans ce problème est la notion d’évènement inconnu. Normalement, dans le calcul de probabilité, un pas prérequis est de définir exactement les évènements observés. Ici, Bayes pose l’hypothèse d’un évènement que nous ne pouvons pas définir. Après, ça commence mollo : presque toute la Section I sonne exactement comme le contenu standard des manuels de maths aujourd’hui. Ça commence à être vraiment intéressant avec Proposition no. 2 dans cette section : « Si une personne a une espérance qui dépend sur l’occurrence d’un évènement, la probabilité de l’évènement est à la probabilité de sa défaillance comme sa perte en cas de défaillance à son gain en cas de l’occurrence ». Voilà que Thomas Bayes annonce sa couleur pour la première fois : dans la vie réelle, nous n’avons pas l’occasion, d’habitude, de calculer les probabilités de succès ou de perte. Nous avons des informations générales et catégoriques du genre : « si votre ceinture de sécurité n’est pas bouclée, la chance que vous soyez atteint par une météorite est X ». On veut savoir comment utiliser ces règles générales dans la vie de tous les jours et Thomas Bayes conseille : établissez des scénarios du genre « si X alors Y » et puis calculez les probabilités conditionnelles.

Exemple : je choisis entre plusieurs investissements alternatifs en des technologies distinctes. Je sais que je n’aurai pas l’occasion de tester chaque technologie l’une après l’autre et que personne ne peut me garantir le succès avec un choix donné. Néanmoins je veux pondérer mes risques. Thomas Bayes dit : d’abord, définissez ce qu’est un succès pour vous dans cette situation. Pour chaque technologie alternative, faites une estimation raisonnable de remplir ces critères de succès. Après ce pas initial, vous aurez donc une probabilité de succès égale à « a » et une probabilité d’échec égale à « b ». Remarquez : échec ne veut pas nécessairement dire faillite complète. Là, j’ai un peu de flexibilité, suivant mes critères de succès. Maintenant, je construis in portefeuille de sept compagnies. Je suis préparé à en sacrifier deux sur l’autel de mon expérience en affaires, mais cinq d’entre eux doivent marcher, suivant ma définition préalable de ce que « marcher » veut dire pour moi. Je veux donc savoir quelle est la probabilité cumulative que 5 investissements sur 7 soient un succès et que 2 sur 7 soient des échecs.

Thomas Bayes postule que ma probabilité cumulative sera égale à E*ap*bq = E*a5*b2. Cela veut dire, dans le raisonnement original de Bayes, que mes 5 succès et 2 échecs peuvent survenir d’E façons différentes et mutuellement incohérentes. Il est utile de se souvenir, à ce point-ci, que les probabilités sont, par définition, des fractions plus petites que 1. Plus grande est l’exposante à laquelle j’élève une telle fraction, plus petite sera la puissance obtenue. Donc, même si mes chances de succès soient égales à celles de l’échec, donc si a = b = 0,5, 0,5 puissance 5 sera plus petit que 0,5 puissance 2. Plus je veux de succès sur un nombre total d’essais, plus petite sera la probabilité de les obtenir, et c’est alors que le facteur E prend de l’importance.  Plus de combinaisons différentes ai-je d’avoir 5 succès et 2 échecs sur un total de 7 investissements, plus grandes sont mes chances d’atteindre mes objectifs.

La théorie que Thomas Bayes exposa dans son essai est vraiment complexe. Là, je ne viens que survoler ses hypothèses initiales. La leçon à tirer est très proche de ce que je suis en train de développer dans mes modèles évolutionnistes : la flexibilité et le choix ont une importance primordiale pour l’issue finale d’un ensemble complexe d’actions entreprises par une société humaine. Nous pouvons dire que les probabilités simples, comme « a » et « b » dans l’exemple de Bayes, sont données par la Nature : elles sont largement exogènes. Largement, mais pas complètement. Beaucoup dépend de la façon de définir mon succès et mon échec. En revanche, le nombre requis de succès, le nombre tolérable d’échecs, ainsi que le nombre de façons possibles de les combiner sont principalement des décisions de ma part. Dans cet aspect particulier, la théorie de Bayes montre que la possibilité de multiplier les formes différentes de faire la même chose accroît mes chances de succès d’une façon capitale. C’est alors que le raisonnement évolutionniste revient en scène : l’évolution c’est une série d’expériences avec une série de mutations. Plus on invente de mutations pour une fonction donnée, plus on a de chances de survivre.

J’ai fait tout ce détour par l’essai fameux de Bayes pour montrer que l’approche évolutionniste n’est pas la même chose que le Darwinisme originel. L’évolutionnisme est une façon d’appréhender tout processus de changement qui implique une série de choix complexes.

[1] Mr. Bayes, and Mr Price. “An essay towards solving a problem in the doctrine of chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfrs.” Philosophical Transactions (1683-1775) (1763): 370-418

Leave a Reply