Le rectangle Bayésien et mon business plan

Mon éditorial, droit de la ville d’Amplepuis cette fois

Je peux résumer ces quelques derniers jours d’écriture. Je suis en train d’étudier la théorie de probabilité, appliquée à un cas réel : mon idée de développer des systèmes énergétiques locaux basés sur les énergies renouvelables et dotées d’un système monétaire local. Comme je conduisais ce fil de raisonnement, j’ai remarqué que je commencé à faire le prof. Je profitais, dans chaque mise à jour, de l’occasion offerte par le sujet pour exposer, de façon didactique, des questions fondamentales du calcul des probabilités. Au fond, ceci n’est pas une mauvaise chose. J’ai bien l’ambition de tourner mon blog scientifique, un jour, en un site éducatif. Autant pratiquer un peu.

Alors, je résume partiellement ma recherche théorique et, en même temps, je résume l’aspect éducatif. Un cas réel, comme celui-ci, donc un business plan pour un projet innovant, nous fait comprendre quelques implications pratiques du calcul des probabilités. Premièrement, une probabilité est une proportion entre des fragments de réalité et c’est précisément ça l’utilité de base du calcul des probabilités. Nous avons une tendance innée à essayer de prédire ce qui va se passer, mais nous disposons de moyens très limités pour faire une telle prédiction de façon intelligible, donc communicable aux autres. Les évènements s’accompagnent mutuellement, ils forment des séquences et des structures. L’assomption du système aristotélicien et déterministe était que nous vivons tous et toujours dans la même structure. C’est aussi une tentation instinctive de notre cerveau de créer l’illusion de reproduction continue d’un même schéma.    Néanmoins, la science moderne nous dit que notre existence est un passage constant entre des différentes structures de réalité. Essayer de prédire l’avenir veut dire deviner dans quelle structure on va atterrir. En plus, nous avons une capacité vraiment limitée de faire la différence entre la réalité d’une part et notre image de la réalité d’autre part. Ce que nous pouvons faire – et que nous faisons tout le temps, en fait, à un niveau neurologique très primaire – consiste à créer beaucoup de représentations alternatives de réalité et à essayer voir laquelle de parmi elles marche le mieux, donc laquelle nous donne le plus d’exactitude de prédiction.

Si je vivais cents ans en arrière, et si ce business plan concernait un nouveau moulin à vent, ce plan serait déterministe. Il ne serait même pas question de business plan, en fait, puisque tout serait réglé par des assomptions du type « il en a toujours été ainsi ». Pourquoi donc aujourd’hui nous faisons des business plans ? Eh bien, parce que nous sommes déjà habitués, au niveau culturel, à l’approche probabiliste : « Donc, mon cher enthousiaste, dans quel univers places-tu ton projet, comment définis-tu ton succès et comment peux-tu m’assurer qu’il y a un chemin rationnellement prévisible vers ledit succès ? ». C’est le moment de tirer le probas de notre manche. Question no. 1 : l’univers. Je sais, l’univers, c’est plutôt grand et plutôt infini. En fonction de la théorie de probabilité qu’on choisit, cet univers peut être plus ou moins infini. Je commence avec l’univers qui est apparemment le plus infini, donc avec l’univers de de Moivre et Laplace. Je cherche ces moyennes solides, à plier de l’acier autour d’elles : je cherche des infos sur les variables que j’ai choisies comme conditions de succès : la taille du marché de l’énergie ou Q(E), les prix d’énergie P(E), le pouvoir d’achat individuel PP(E) en ce qui concerne ladite énergie, le taux de retour sur actifs ROA, l’offre agrégée de l’argent M, ainsi que la taille du marché W des transactions effectuées en des monnaies virtuelles. Dans un business plan, vous pouvez fréquemment trouver ces données-là comme « Etude primaire de marché » ou un truc similaire.

Voilà, maintenant que j’ai épinglé ces moyennes sur ma table, je peux créer un univers un peu moins infini, celui de Thomas Bayes. En fait, je le suis déjà dit hier qu’en vertu de clarté il serait utile que je dessine le rectangle Bayésien, celui qui a servi Thomas Bayes à construire la preuve de ses propositions. Donc, vous cliquez ici, sur le rectangle Bayésien et vous pouvez le voir, aussi fidèle au dessin originel que j’ai pu le faire. Le truc, ici, c’est de construire un univers abordable, fini, avec des limites. Qu’est-ce qui peut bien se passer ? Tout, en fait, mais dans ce tout il y a des choses qui ne sont liées à mon projet que d’une façon très distante. J’utilise ces moyennes du type de Moivre – Laplace que j’ai déjà trouvées. Provisoirement, je construis cinq rectangles Bayésiens, un pour chaque variable dans mon objectif quantifiable ( M et W se trouvent dans un seul rectangle, puisque mon objectif quantifiable dans leur cas c’est W/M). Leurs distributions respectives feront la longueur du côté AB dans chaque rectangle ou, en langage humain, elles représentent ce qui peut raisonnablement se passer.

Là, une petite remarque semble utile. Dans ce rectangle Bayésien, vous pouvez remarquer une ligne centrale Ii, genre de sécante à travers cet univers. C’est celle qui touche à cette espèce de bosse sous le rectangle proprement dit. La bosse en rouge, c’est une ligne que Thomas Bayes a dessinée sous le rectangle et la seule ligne courbe dans tout son dessin originel. Eh bien, quoi qu’il ne le dit pas directement dans son article (Bayes, Price 1763[1]), je devine que cette ligne courbe c’est la distribution de De Moivre – Laplace ou, si vous voulez une référence plus proche dans le temps, une distribution Gaussienne. Le point « i » sur cette courbe semble être la moyenne, ou la valeur espérée de la distribution. De là, je déduis que l’intention de Thomas Bayes était de placer son raisonnement dans un univers congruent avec celui de De Moivre – Laplace, mais plus étroit et plus défini.

Alors, la première balle de Thomas Bayes est jetée, celle qu’il eût désignée comme « W » est qui est censée positionner l’univers de probabilité même plus exactement par rapport à l’immensité de tout ce qui peut se passer. Sa position d’atterrissage fixe la position du point « o » sur le côté AB du rectangle et la position de la ligne Sow. En regardant la position de ce point « o » et de la ligne Sow qu’il fixe je me dis – et c’est encore une fois une supposition de ma part – que Thomas Bayes avait en tête une situation où cet évènement initial d’atterrissage de la première balle découpe un fragment vraiment très circonscrit par rapport à l’univers initial.

Bon, donc dans mon business plan, je jette cette première balle. Dans chacun de ces cinq rectangles Bayésiens initiaux que j’avais tracé précédemment autour de mes six moyennes – la taille du marché de l’énergie Q(E), les prix d’énergie P(E), le pouvoir d’achat individuel PP(E) en ce qui concerne l’énergie, le taux de retour sur actifs ROA, l’offre agrégée de l’argent M, et la taille du marché W des transactions effectuées en des monnaies virtuelles – ce premier jet de balle découpe une section où je veux bien me trouver avec mon projet, une sorte de zone favorable.

Maintenant, le temps vient de jeter la seconde balle « O », celle qui est mon essai proprement dit. Pour les besoins d’un business plan, il faut bien la calibrer, cette seconde balle. Intuitivement, dans mon cas précis de systèmes énergétiques locaux, je choisis des balles de calibre différent pour des rectangles différents. Quand j’étudie mes chances de succès dans le marché local, donc quand je parle de la consommation locale d’énergie ainsi que des prix et du pouvoir d’achat, je prends un consommateur comme une balle. Ma balle « W » était donc un consommateur représentatif pour un succès de ma part ; donc un consommateur qui peut bien se permettre de payer pour toute l’énergie verte dont il a besoin pour couvrir toute sa demande individuelle. Ma ligne Sow dans le rectangle c’est la frontière entre le marché composé de consommateurs aux caractéristiques favorables à mon projet, d’une part, et tout le reste du marché d’autre part. Ma balle « O » c’est un essai de ma part d’atterrir, avec mon marketing local, dans le segment de consommateurs qui ont au moins ce profil-là ou même mieux, comme des enthousiastes avec portefeuille épais et un sens d’engagement prononcé. Mon nombre total d’essais est le nombre total de consommateurs que je peux raisonnablement espérer de toucher avec mon effort marketing.

Là, je peux montrer la différence entre la logique Bayésienne et celle de la distribution Poisson, utilisée par Satoshi Nakamoto dans ses simulations initiales pour le Bitcoin. Dans la distribution Poisson le nombre total d’essais est toujours défini comme un intervalle de temps. Si j’appréhendais mon business plan du côté Poisson, ma question serait « Quelle est la probabilité que j’attire le nombre de consommateurs voulu dans un intervalle de temps N ? ». Dans la logique Bayésienne je peux me concentrer sur cet aspect temporel ou utiliser une autre échelle (autre que le temps, je veux dire) pour mesurer mon nombre d’essais.

Disons que pour la clarté, je choisis une échelle temporelle. Je veux calculer la probabilité Bayésienne du scénario suivant : sur les 365 jours de l’année, je veux 265 jours avec succès marketing et je peux tolérer 100 jours avec échec. La probabilité de succès pour un seul jour est de 50%, donc 0,5. Ma probabilité Bayésienne se calcule comme E*ap*bq = (265100/100 !)*0,5265*0,5100 = 3,01048*e-26. N’essayez même pas de l’écrire normalement. La probabilité d’un tel scénario est tellement minime, dans la logique Bayésienne, que je peux m’en passer dans mon business plan.

Maintenant, la logique de Siméon Denis Poisson et sa formule P = e-l*(lk/k !), où « e » est la constante e = 2,71828…, « l » est le nombre moyen espéré d’évènements par intervalle de temps, et « k » est le nombre de succès par intervalle de temps. Comme la probabilité d’un seul succès est de 50%, le nombre moyen espéré est de l = 0,5*365 = 182,5. Ma probabilité de Poisson, de 265 jours à succès en une année est donc de P = e-182,5*(182,5265/265 !) et alors c’est là que ça pète, puisque le résultat est de – 179,28. Ceci n’est pas une probabilité.

Bon, mon cerveau commence à démanger. Ce sera tout pour aujourd’hui.

[1] Mr. Bayes, and Mr Price. “An essay towards solving a problem in the doctrine of chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfrs.” Philosophical Transactions (1683-1775) (1763): 370-418

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s