The other cheek of business

My editorial

I am turning towards my educational project. I want to create a step-by-step teaching method, where I guide a student in their learning of social sciences, and this learning is by doing research in social sciences. I have a choice between imposing some predefined topics for research, or invite each student to propose their own. The latter seems certainly more exciting. As a teacher, I know what a brain storm is, and believe: a dozen dedicated and bright individuals, giving their ideas about what they think it is important to do research about, can completely uproot your (my own?) ideas as what it is important to do research about. Still, I can hardly imagine me, individually, handling efficiently all that bloody blissful diversity of ideas. Thus, the first option, namely imposing some predefined topics for research, seems just workable, whilst still being interesting. People can get creative about methods of research, after all, not just about topics for it. Most of the great scientific inventions was actually methodology, and what was really breakthrough about it consisted in the universal applicability of those newly invented methods.

Thus, what I want to put together is a step-by-step path of research, communicable and teachable, regarding my own topics for research. Whilst I still admit the possibility of student-generated topics coming my way, I will consider them as a luxurious delicacy I can indulge in under the condition I can cope with those main topics. Anyway, my research topics for 2018 are:

  1. Smart cities, their emergence, development, and the practical ways of actually doing business there
  2. Fintech, and mostly cryptocurrencies, and even more mostly those hybrid structures, where cryptocurrencies are combined with the “traditional” financial assets
  • Renewable energies
  1. Social and technological change as a manifestation of collective intelligence

Intuitively, I can wrap (I), (II), and (III) into a fancy parcel, decorated with (IV). The first three items actually coincide in time and space. The fourth one is that kind of decorative cherry you can put on a cake to make it look really scientific.

As I start doing research about anything, hypotheses come handy. If you investigate a criminal case, assuming that anyone could have done anything anyhow gives you certainly the biggest possible picture, but the picture is blurred. Contours fade and dance in front on your eyes, idiocies pop up, and it is really hard to stay reasonable. On the other hand, if you make some hypotheses as for who did what and how, your investigation gathers both speed and sense. This is what I strongly advocate for: make some hypotheses at the starting point of your research. Before I go further with hypothesising on my topics for research, a few preliminary remarks can be useful. First of all, we always hypothesise about anything we experience and think. Yes, I am claiming this very strongly: anything we think is a hypothesis or contains a hypothesis. How come? Well, we always generalise, i.e. we simplify and hope the simplification will hold. We very nearly always have less data than we actually need to make the judgments we make with absolute certainty. Actually, everything we pretend to claim with certainty is an approximation.

Thus, we hypothesise intuitively, all the time. Now, I summon the spirit of Milton Friedman from the abyss of pre-Facebook history, and he reminds us the four basic levels of hypothesising. Level one: regarding any given state of nature, we can formulate an indefinitely great number of hypotheses. In practice, there is infinitely many of them. Level two: just some of those infinitely many hypotheses are checkable at all, with the actual access to data I have. Level three: among all the checkable hypotheses, with the data at hand, there are just some, regarding which I can say with reasonable certainty whether they are true or false. Level four: it is much easier to falsify a hypothesis, i.e. to say under what conditions it does not hold at all, than to verify it, i.e. claiming under what conditions it is true. This comes from level one: each hypothesis has cousins, who sound almost exactly the same, but just almost, so under given conditions many mutually non-exclusive hypotheses can be true.

Now, some of you could legitimately ask ‘Good, so I need to start with formulating infinitely many hypotheses, then check which of them are checkable, then identify those allowing more or less rigorous scientific proof? Great. It means that at the very start I get entangled for eternity into checking how checkable is each of the infinitely many hypotheses I can think of. Not very promising as for results’. This is legit to say that, and this is the reason why, in science, we use that tool known as the Ockham’s razor. It serves to give a cognitive shave to badly kept realities. In its traditional form it consists in assuming that the most obvious answer is usually the correct one. Still, as you have a closer look at this precise phrasing, you can see a lot of hidden assumptions. It assumes you can distinguish the obvious from the dubious, which, in turn, means that you have already applied the razor beforehand. Bit of a loop. The practical way of wielding that razor is to assume that the most obvious thing is observable reality. I start with finding my bearings in reality. Recently, I gave an example of that: check ‘My individual square of land, 9 meters on 9’  . I look around and I assess what kind of phenomena, which, at this stage of research, I can intuitively connect to the general topic of my research, and which I can observe, measure, and communicate intelligibly about. These are my anchors in reality.

I look at those things, I measure them, and I do my best to communicate by observations to other people. This is when the Ockham’s razor is put to an ex post test: if the shave has been really neat, other people can easily understand what I am communicating. If I and a bunch of other looneys (oops! sorry, I wanted to say ‘scientists’) can agree on the current reading of the density of population, and not really on the reading of unemployment (‘those people could very well get a job! they are just lazy!), then the density of population is our Ockham’s razor, and unemployment not really (I love the ‘not really’ expression: it can cover any amount of error and bullshit). This is the right moment for distinguishing the obvious from the dubious, and to formulate my first hypotheses, and then I move backwards the long of the Milton Friedman’s four levels of hypothesising. The empirical application of the Ockham’s razor has allowed me to define what I can actually check in real life, and this, in turn, allows distinguishing between two big bags, each with hypotheses inside. One bag contains the verifiable hypotheses, the other one is for the speculative ones, i.e. those non-verifiable.

Anyway, I want my students to follow a path of research together with me. My first step is to organize the first step on this path, namely to find the fundamental, empirical bearings as for those four topics: smart cities, Fintech, renewable energies and collective intelligence. The topic of smart cities certainly can find its empirical anchors in the prices of real estate, and in the density of population, as well as in the local rate of demographic growth. When these three dance together – once again, you can check ‘My individual square of land, 9 meters on 9’ – the business of building smart cities suddenly gets some nice, healthy, reddish glow on its cheeks. Businesses have cheeks, didn’t you know? Well, to be quite precise, businesses have other cheeks. The other cheek, in a business, is what you don’t want to expose when you already get hit somewhere else. Yes, you could call it crown jewels as well, but other cheek sounds just more elegantly.

As for Fintech, the first and most obvious observation, from my point of view, is diversity. The development of Fintech calls into existence many different frameworks for financial transactions in times and places when and where, just recently, we had just one such framework. Observing Fintech means, in the first place, observing diversity in alternative financial frameworks – such as official currencies, cryptocurrencies, securities, corporations, payment platforms – in the given country or industry. In terms of formal analytical tools, diversity refers to a cross-sectional distribution and its general shape. I start with I taking a convenient denominator. The Gross Domestic Product seems a good one, yet you can choose something else, like the aggregate value of intellectual property embodied in selfies posted on Instagram. Once you have chosen your denominator, you measure the outstanding balances, and the current flows, in each of those alternative, financial frameworks, in the units of your denominator. You get things like market capitalization of Ethereum as % of GDP vs. the supply of US dollar as % of its national GDP etc.

I pass to renewable energies, now. When I think about what is the most obviously observable in renewable energies, it is a dual pattern of development. We can have renewable sources of energy supplanting fossil fuels: this is the case in the developed countries. On the other hand, there are places on Earth where electricity from renewable sources is the first source of electricity ever: those people simply didn’t have juice to power their freezer before that wind farm started up in the whereabouts. This is the pattern observable in the developing countries. In the zone of overlapping, between those two patterns, we have emerging markets: there is a bit of shifting from fossils to green, and there is another bit of renewables popping up where nothing had dared to pop up in the past. Those patterns are observable as, essentially, two metrics, which can possibly be combined: the final consumption of energy per capita, and the share of renewable sources in the final consumption of energy. Crude as they are, they allow observing a lot, especially when combined with other variables.

And so I come to collective intelligence. This is seemingly the hardest part. How can I say that any social entity is kind of smart? It is even hard to say in humans. I mean, virtually everybody claims they are smart, and I claim I’m smart, but when it comes to actual choices in real life, I sometimes feel so bloody stupid… Good, I am getting a grip. Anyway, intelligence for me is the capacity to figure out new, useful things on the grounds of memory about old things. There is one aspect of that figuring out, which is really intriguing my internal curious ape: the phenomenon called ultra-socialisation, or supersocialisation. I am inspired, as for this one, by the work of a group of historians: see ‘War, space, and the evolution of Old World complex societies’ (Turchin et al. 2013[1]). As a matter of fact, Jean Jacques Rousseau, in his “Social Contract”, was chasing very much the same rabbit. The general point is that any group of dumb assholes can get social on the level of immediate gains. This is how small, local societies emerge: I am better at running after woolly mammoths, you are better at making spears, which come handy when the mammoth stops running and starts arguing, and he is better at healing wounds. Together, we can gang up and each of us can experience immediate benefits of such socialisation. Still, what makes societies, according to Jean Jacques Rousseau, as well as according to Turchin et al., is the capacity to form institutions of large geographical scope, which require getting over the obsession of immediate gains and provide long-term, developmental a kick. What is observable, then, are precisely those institutions: law, state, money, universally enforceable contracts etc.

Institutions – and this is the really nourishing takeaway from that research by Turchin et al. (2013[2]) – are observable as a genetic code. I can decompose institutions into a finite number of observable characteristics, and each of them can be observable as switched on, or switched off. Complex institutional frameworks can be denoted as sequences of 1’s and 0’s, depending on whether the given characteristics is, respectively, present or absent. Somewhere between the Fintech, and collective intelligence, I have that metric, which I found really meaningful in my research: the share of aggregate depreciation in the GDP. This is the relative burden, imposed on the current economic activity, due to the phenomenon of technologies getting old and replaced by younger ones. When technologies get old, accountants accounts for that fact by depreciating them, i.e. by writing off the book a fraction of their initial value. All that writing off, done by accountants active in a given place and time, makes aggregate depreciation. When denominated in the units of current output (GDP), it tends to get into interesting correlations (the way variables can socialize) with other phenomena.

And so I come with my observables: density of population, demographic growth, prices of real estate, balances and flows of alternative financial platforms expressed as percentages of the GDP, final consumption of energy per capita, share of renewable energies in said final consumption, aggregate depreciation as % of the GDP, and the genetic code of institutions. What I can do with those observables, is to measure their levels, growth rates, cross-sectional distributions, and, at a more elaborate level, their correlations, cointegrations, and their memory. The latter can be observed, among other methods, as their Gaussian vector autoregression, as well as their geometric Brownian motion. This is the first big part of my educational product. This is what I want to teach my students: collecting that data, observing and analysing it, and finally to hypothesise on the grounds of basic observation.

[1] Turchin P., Currie, T.E.,  Turner, E. A. L., Gavrilets, S., 2013, War, space, and the evolution of Old World complex societies, Proceedings of The National Academy of Science, vol. 110, no. 41, pp. 16384 – 16389

[2] Turchin P., Currie, T.E.,  Turner, E. A. L., Gavrilets, S., 2013, War, space, and the evolution of Old World complex societies, Proceedings of The National Academy of Science, vol. 110, no. 41, pp. 16384 – 16389

Leave a Reply