Les 2326 kWh de civilisation

Mon éditorial sur You Tube

Je reviens à ma recherche sur le marché de l’énergie. Je pense que l’idée théorique a suffisamment mûri. Enfin j’espère.

Dans un marché donné d’énergie il y a N = {i1, i2, …, in} consommateurs finaux, M = {j1, j2, …, jm} distributeurs et Z = {k1, k2, …, kz} fournisseurs primaires (producteurs). Les consommateurs finaux se caractérisent par un coefficient de consommation individuelle directe EC(i). Par analogie, chaque distributeur se caractérise par un coefficient de quantité d’énergie négociée EN(j) et chaque fournisseur primaire se caractérise par un coefficient individuel de production EP(k).

Le marché est à priori ouvert à l’échange avec d’autres marchés, aussi bien au niveau de la fourniture primaire d’énergie qu’à celui du négoce. En d’autres mots, les fournisseurs primaires peuvent exporter l’énergie et les distributeurs peuvent aussi bien exporter leurs surplus qu’importer de l’énergie des fournisseurs étranger pour balancer leur négoce. Logiquement, chaque fournisseur primaire se caractérise par une équation EP(k) = EPd(k) + EPx(k), où EPd signifie fourniture primaire sur le marché local et EPx symbolise l’exportation de l’énergie.

De même, chaque distributeur conduit son négoce d’énergie suivant l’équation EN(j) = ENd(j) + EI(j) + ENx(j)ENx symbolise l’énergie exportée à l’étranger au niveau des relations entre distributeurs, EI est l’énergie importée et ENd est l’énergie distribuée dans le marché local.

L’offre totale OE d’énergie dans le marché en question suit l’équation OE = Z*[EPd(k) – EPx(k)] = M*[ENd(j) + EI(j) – ENx(j)]. Remarquons qu’une telle équation assume un équilibre local du type marshallien, donc le bilan de l’offre d’énergie et de la demande pour énergie se fait au niveau microéconomique des fournisseurs primaires et des distributeurs.

La consommation totale ET(i) d’énergie au niveau des consommateurs finaux est composée de la consommation individuelle directe EC(i) ainsi que de l’énergie ECT(i) consommée pour le transport et de l’énergie incorporée, comme bien intermédiaire ECB(i), dans les biens et services finaux consommés dans le marché en question. Ainsi donc ET(i) = EC(i) + ECT(i) + ECB(i).

La demande totale et finale DE d’énergie s’exprime donc comme

N*ET(i) = N*[EC(i) + ECT(i) + ECB(i)]

et suivant les assomptions précédentes elle est en équilibre local avec l’offre, donc

Z*[EPd(k) – EPx(k)] = N*[EC(i) + ECT(i) + ECB(i)]

aussi bien que

M*[ENd(j) + EI(j) – ENx(j)] = N*[EC(i) + ECT(i) + ECB(i)].

Avant que j’aille plus loin, une explication. Pour le moment j’assume que les coefficients individuels mentionnés plus haut sont des moyennes arithmétiques donc des valeurs espérées dans des ensembles structurées suivant des distributions normales (Gaussiennes). C’est une simplification qui me permet de formaliser théoriquement des « grosses » idées. Je pense que par la suite, j’aurai à faire des assomptions plus détaillées en ce qui concerne la distribution probabiliste de ces coefficients, mais ça, c’est pour plus tard.

Ça, c’était simple. Maintenant, le premier défi théorique que je perçois consiste à exprimer cette observation que j’avais faite il y a des mois de ça : les pays les plus pauvres sont aussi le moins pourvus en énergie. Au niveau du bilan énergétique la pauvreté se caractérise soit, carrément, par la quasi-absence de la consommation d’énergie niveau transport et niveau énergie incorporée dans les biens et services, soit par une quantité relativement petite dans ces deux catégories. C’est à mesure qu’on grimpe les échelons de richesse relative par tête d’habitant que les coefficients ECT(i) et ECB(i) prennent de la substance.

La seconde observation empirique à formaliser concerne la structure de la fourniture primaire d’énergie. Dans les pays les plus pauvres, l’énergie primaire est très largement fournie par ce que l’Agence Internationale d’Énergie définit élégamment comme « combustion des bio fuels » et qui veut tout simplement dire qu’une grande partie de la société n’a pas d’accès à l’électricité et ils se procurent leur énergie primaire en brûlant du bois et de la paille. Formellement, ça compte comme utilisation d’énergies renouvelables. Le bois et la paille, ça repousse, surtout cette dernière. Encore faut se souvenir que ce type d’énergétique est renouvelable au niveau de la source d’énergie mais pas au niveau du produit : le processus relâche du carbone dans l’atmosphère sans qu’on ait une idée vraiment claire comment faire retourner ce génie dans la lampe. La morale (partielle) du conte des fées est que lorsque vous voyez des nombres agrégés qui suggèrent la prévalence d’énergies renouvelables en Soudan du Sud, par exemple, alors ces renouvelables c’est du feu de paille très littéralement.

La différence empirique entre ces pays les plus pauvres et ceux légèrement plus opulents réside dans le fait que ces derniers ont un réseau de fourniture primaire d’électricité ainsi que de sa distribution et ce réseau dessert une large partie de la population. Ce phénomène se combine avec une percée originale d’énergies renouvelables dans les pays en voie de développement : des populations entières, surtout des populations rurales, gagnent l’accès à l’électricité vraiment 100% renouvelable, comme du photovoltaïque, directement à partir d’un monde sans électricité. Ils ne passent jamais par la phase d’électricité fournie à travers des grosses infrastructures industrielles que nous connaissons en Europe.

C’est justement la percée d’électricité dans une économie vraiment pauvre qui pousse cette dernière en avant sur la voie de développement. Comme j’étudie la base des données de la Banque Mondiale à propos de la consommation finale d’énergie par tête d’habitant, je pose une hypothèse de travail : lorsque ladite tête d’habitant dépasse le niveau de quelques 2326 kilowatt heures de consommation finale d’énergie par an, soit 200 kg d’équivalent pétrole, une société quasiment dépourvue d’économie régulière d’échange se transforme en une société qui produit et fait circuler des biens et des services.

Une fois ce cap franchi, le prochain semble se situer aux environs d’ET(i) égale à 600 ± 650 kg d’équivalent pétrole, soit 6 978,00 ± 7 559,50 kilowatt heures par an par tête d’habitant. Ça, c’est la différence entre des sociétés pauvres et en même temps instables socialement ainsi que politiquement d’une part, et celles dotées d’institutions bien assises et bien fonctionnelles. Rien qui ressemble à du paradis, au-dessus de ces 6 978,00 ± 7 559,50 kilowatt heures par an par tête d’habitant, néanmoins quelque chose qui au moins permet de construire un purgatoire bien organisé.

L’étape suivante est la transgression d’un autre seuil, que je devine intuitivement quelque part entre 16 240 kWh et 18 350 kWh par an par tête d’habitant. C’est plus ou moins le seuil officiel qui marque la limite inférieure de la catégorie « revenu moyen » dans la terminologie de la Banque Mondiale. C’est alors qu’on commence à observer des marchés bien développés est des structures institutionnelles tout à fait stables. Oui, les hommes politiques peuvent toujours faire des conneries, mais ces conneries sont immédiatement projetées contre un fonds d’ordre institutionnel et de ce fait sont possibles à contrecarrer de façon autre qu’une guerre civile. Une fois dans la catégorie « revenu moyen », une économie semble capable de transition secondaire vers les énergies renouvelables. C’est le passage des réseaux typiquement industriels, basés sur des grosses centrales électriques, coexistantes avec des réseaux de distribution fortement oligopolistes, vers des systèmes de fourniture d’énergie basés sur des installations locales puisant leur jus des sources renouvelables.

Finalement, à partir de quelques 3000 kg d’équivalent pétrole = 34 890 kWh par an par tête d’habitant c’est la catégorie des pays vraiment riches. En ce qui concerne les énergies renouvelables, des investissements vraiment systémiques commencent au-dessus de ce seuil. C’est une transition secondaire à forte vapeur.

Bon, je formalise. Une variable parmi celles que j’ai nommées quelques paragraphes plus tôt vient au premier plan :  la consommation totale d’énergie par tête d’habitant ou ET(i) = EC(i) + ECT(i) + ECB(i). Les observations empiriques que je viens de décrire indiquent que dans le processus de développement économique des sociétés, le côté droit de l’équation ET(i) = EC(i) + ECT(i) + ECB(i) se déploie de gauche à droite. D’abord, il y a du EC(i). Les gens consomment de l’énergie pour leurs besoins le plus individuels et le plus directement possible. On brûle du bois ou de la paille et on a de l’énergie thermique pour faire de la cuisine, pour décontaminer l’eau et pour se chauffer. Si ça marche, des habitats humains permanents s’établissent.

Je sais que ça sonne comme le compte rendu d’évènements qui se passèrent à l’aube de la civilisation, mais après que j’ai étudié la situation des nations les plus pauvres du monde je sais aussi que c’est bien ce qui se passe dans des pays comme Niger ou Soudan. Le premier défi de ces populations consiste à faire marcher la structure sociale de base, donc à arriver au point quand les communautés locales sont capables de se développer et pour se développer lesdites communautés locales ont tout simplement besoin de s’établir sur une base relativement stable de nourriture et d’énergie.

Une fois que ce cap est franchi, donc une fois qu’ET(i) passe un seuil critique ET1(i), il y a un surplus d’énergie qui peut se traduire comme le développement du transport, ainsi que celui des marchés des biens et des services. En d’autres mots :

ET1(i) = 2 326 kWh

[EC(i) ≤ EC1(i)] => [ET(i) = EC(i) et ECT(i) ≈ 0 et ECB(i) ≈ 0]

[EC(i) > EC1(i)] => [ET(i) = EC(i) + ECT(i) + ECB(i) ; ECT(i) > 0 et ECB(i) > 0]

[EC(i) > EC1(i)] <=> [ECT(i) + ECB(i) = ET(i) – 2 326 kWh]

La seconde valeur critique, que je nomme ET2(i), donne lieu à l’émergence d’une structure institutionnelle suffisamment stable pour être appelée « ordre institutionnel ». Je sais que :

6 978,00 kWh ≤ ET2(i) ≤ 7 559,50 kWh

et que

4652 kWh < [ET2(i) – ET1(i)] ≤ 5233,5 kWh

et de même

{4652 kWh < [ECT(i) + ECB(i)] ≤ 5233,5 kWh}

ainsi que

[6 978,00 kWh ≤ ET2(i) ≤ 7 559,50 kWh] => ordre institutionnel

Alors vient ce troisième seuil, 16 240 kWh ≤ ET3(i) ≤ 18 350 kWh où la transition secondaire vers les énergies renouvelables devient possible. Cette transition prend donc lieu lorsque

13 914 kWh ≤ [ECT(i) + ECB(i)] ≤ 16 024 kWh

Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ?

Vous pouvez donner votre support financier à ce blog

€10,00

Chaos jak po zbóju, czyli karteczki dla premiera

Mój wstępniak na You Tube

Jedną z sytuacji, kiedy ktoś musi znaleźć swoją ścieżkę w przestrzeni społecznej jest tworzenie własnego biznesu. Najlepiej mogę sprawdzić jak moje nauczanie może pomóc w tworzeniu czyjegoś biznesu, jeżeli sam co jakiś czas wezmę się za przygotowanie biznes planu. Temu właśnie chciałbym poświęcić przynajmniej kilka wpisów w polskojęzycznej wersji mojego bloga naukowego. Mam dwa, autentyczne i nieudawane pomysły na biznes i staram się je rozwinąć. Jeden to projekt, który nazwałem BeFund, przedsięwzięcie bliskie mojej pracy naukowej. Jest to połączenie laboratorium behawioralnego z funduszem inwestycyjnym dla startupów. Podstawowa idea tego projektu opiera się na obserwacji, że najwięcej porażek startupów technologicznych ma miejsce w fazie dostosowania technologii do potrzeb użytkowników i utrzymania konkurencyjności tej technologii. Laboratorium behawioralne miałoby służyć optymalizacji cech użytkowych technologii, na których startup się opiera. Dla tego projektu mam już nakreślony biznes plan w języku angielskim i teraz postaram się przedstawić go w polskojęzycznej ścieżce mojego pisania.

Cała idea projektu BeFund wzięła się z mojej fascynacji zjawiskiem tzw. Smart Cities, czyli inteligentnych miast. Ta fascynacja ma z kolei swoje korzenie w innej, tej związanej ze zmianami technologicznymi i relacją pomiędzy energią, technologią – szczególnie elektroniką i technologiami cyfrowymi – a ludzką cywilizacją. Wracam jednak do projektu BeFund. Na początek: co to jest laboratorium behawioralne i po kiego licha tworzyć kolejne? Otóż jest to laboratorium przeznaczone do badania ludzkich zachowań, w tym szczególnie interakcji z nowymi technologiami. „Zachowanie” rozumiem szeroko. Sposób podejmowania decyzji to wzorzec zachowań i ewentualne przyspieszenie oddechu podczas podejmowania niektórych z tych decyzji też jest wzorcem zachowań. Zauważcie: płynnie przeszedłem od pojęcia zachowania do wzorca zachowań. Nawiązuję w ten sposób do jednej z podstawowych zasad nauk społecznych: my, ludzie, działamy według powtarzalnych wzorców, których uczymy się w drodze kolejnych eksperymentów. Piszę więcej na ten temat w moim poprzednim wpisie pt. „Dwie kule w Kalifornii i wielebny Thomas Bayes”.

Kiedy zacząłem się interesować rozwojem inteligentnych miast, zauważyłem kilka interesujących zjawisk. Inteligentne miasta rozwijają się w dużej mierze poprzez inkubację startupów technologicznych (czyli świeżo zakładanych, z reguły stosunkowo niewielkich firm ukierunkowanych na komercjalizację nowych technologii). Startupy technologiczne odznaczają się stosunkowo wysoką śmiertelnością: większość z nich pada po 2 – 3 latach albo zostaje wchłonięte przez duże korporacje. Technologie lansowane przez startupy są najczęściej swego rodzaju użytkowymi mutacjami jakiejś szerszej bazy technologicznej. Dla przykładu, taką modną ostatnio bazą technologiczną jest język programowania Python. Wiele aplikacji FinTech, lansowanych przez startupy, jest opartych właśnie na nim.

To trochę jak wiele konkurujących ze sobą domów mody. Mają dostęp do tych samych materiałów i tych samych technik krawieckich. Różnica tkwi w koncepcji estetycznej, czyli w dopasowaniu tych materiałów i tych technik do oczekiwań określonej grupy klientów, a jednocześnie trzeba mieć kreatywny pazur. Ze startupami technologicznymi jest tak samo. Opieramy się na jakieś szerokiej bazie technologicznej i coś wymyślamy. To coś musi oryginalne i prowokujące ciekawość, lecz jednocześnie funkcjonalnie dopasowane do określonego użytkownika. Taki mały paradoks tu mamy: z jednej strony musimy dać funkcjonalność niecodzienną i prowokującą, ale z drugiej strony, pod powłoką prowokacji i unikalności, to coś musi być dopasowane do wyuczonych, rutynowych wzorców zachowań po stronie użytkowników.

Tu pojawia się czysto praktyczna strona mojego pomysłu BeFund. Kontrolowane środowisko eksperymentalne, które twórcy startupów technologicznych mogliby wynajmować na godziny po to, aby testować interakcje tworzonych rozwiązań technologicznych z użytkownikami, byłoby jak znalazł. W ten sposób znacznie zmniejsza się ryzyko, że jakaś funkcjonalność dozna porażki biznesowej na skutek niewystarczającej konkurencyjności dla użytkownika.

Przykład eksperymentu behawioralnego ? A proszę bardzo. Każda technologia musi być niezawodna. Jednym z aspektów niezawodności jest odporność na błędy popełniane przez użytkownika. Błąd to sytuacja, kiedy użytkownik powinien wykonać działanie A, lecz zamiast tego wykonuje działanie B. Umieszczamy osoby reprezentatywne dla tego, co pokolenie młodsze od mojego określa mianem „targetu”, w kontrolowanym środowisku eksperymentalnym. Są sam na sam z testowaną technologią. Poddajemy ich celowej dystrakcji, czyli rozpraszamy ich uwagę. W pomieszczeniu, gdzie się znajdują jest np. bardzo gorąco albo bardzo zimno. Miga tam ostre światło. Gra głośna muzyka. Zawieszony na ścianie telewizor wyświetla coś strasznego, np. kolejny wiec wyborczy albo kolejny przegrany mecz polskiej drużyny w jakąś piłkę (rodzaj piłki do wyboru). Można te bodźce mnożyć do woli.

Teraz kalibrujemy. Dajemy uczestnikom eksperymentu jakieś zadania wymagające koncentracji uwagi: połącz punkty na rysunku, rozwiąż zadania matematyczne, dopasuj elementy puzzla itp. Najpierw robimy to w środowisku sprzyjającym koncentracji uwagi – nie ma wiecu wyborczego w telewizorze na ścianie. Zapisujemy wyniki osiągnięte przez uczestników eksperymentu. Potem stopniowo podkręcamy strumień bodźców i zwiększamy dystrakcję. Robimy to np. w pięciu kolejnych stopniach. Na każdym stopniu dystrakcji dajemy uczestnikom do wykonania identyczny zestaw zadań (oczywiście puzzle jest inny i działania matematyczne są inne, ale struktura zadania jest taka sama) i mierzymy ich wyniki.

W ten sposób kalibrujemy nasze środowisko eksperymentalnie, tzn. określamy różne poziomy dystrakcji u naszych uczestników. Może być spokój i porządek – stopień pierwszy – albo trochę nieporządku, tak jak pod koniec dnia w centrum rozliczeniowym – stopień drugi – albo sporo nieporządku, jak tuż przed rodzinnym wyjazdem na wakacje – stopień trzeci – albo znowu tak, jak wtedy, kiedy nazajutrz rano po solidnej imprezie trzeba się wybrać do pracy na 6:30 rano – stopień czwarty – albo wreszcie tak, jak wtedy kiedy naszym szefem jest premier i właśnie się dowiedział, że nie przygotowaliśmy mu tych małych karteczek do przemówienia, które ma wygłosić za 5 minut – to jest stopień piąty, czyli chaos po zbóju.

Teraz nasi uczestnicy zaczynają korzystać z testowanej technologii. Obserwujemy błędy, jakie popełniają na kolejnych stopniach dystrakcji. Interesuje nas kilka różnych rzeczy. Po pierwsze, ważny jest katalog możliwych błędów. Twórcy testowanej technologii mogą do nich dopasować funkcjonalności typu „głupi Jasio”. Najdalej idącym rozwiązaniem jest automatyzacja tego konkretnego fragmentu procesu tak, żeby użytkownik nawet nie miał okazji podejmować decyzji prowadzących do popełnienia błędu. Innym rozwiązaniem jest sugestia ukierunkowana na podświadomość, np. wyeksponować graficznie to, co użytkownik powinien kliknąć na ekranie i raczej zmniejszyć albo schować w mniej widocznym menu to, czym w danej chwili raczej nie powinien się zajmować jak nie chce żeby mu się apka zawiesiła. Największe zaufanie do użytkowników wykazujemy wtedy, kiedy po prostu umieszczamy sugestie ukierunkowane na świadomość, jak na ekranach zamówienia w McDonaldzie: „czy jesteś pewien/pewna że to jest Twoje zamówienie ?” itp.

Wyposażamy kolejną generację prototypów w tego typu zabezpieczenia i testujemy ponownie. Ideałem jest dojście do zerowej liczby błędów użytkowników na najwyższym poziomie dystrakcji. Eksperyment może jednak wykazać, że realistycznie możliwy do osiągnięcia jest nieco niższy poziom doskonałości. Pozwala nam to określić, jaka liczba jakiego rodzaju błędów jest realistycznie do przewidzenia w typowej interakcji naszego reprezentatywnego targeta z definitywną, lansowaną na rynku technologią.

Tak sobie pomyślałem, że takie laboratorium behawioralne, jakie chciałbym stworzyć w projekcie BeFund może już na wejściu oferować twórcom nowych technologii środowisko eksperymentalne skalibrowane – i to starannie – pod kątem możliwych stopni dystrakcji. To byłoby jak znalazł do testowania różnych aspektów technologii. Niezawodność to jedno, ale szybkość to drugie. Jak szybko nasze króliki eksperymentalni (królicy eksperymentalni ?) zarejestrują 100 faktur w systemie rachunkowo – księgowym, na różnych stopniach dystrakcji ? Jakie błędy przy tym popełnią ? No i jeszcze jedno: jak bardzo będą kontent, albo wręcz przeciwnie, po wykonaniu całego ciągu operacji ?

Ta ostatnia kwestia, czyli subiektywne doznania uczestników eksperymentu, jest istotna dla procesów uczenia się, o których pisałem już wcześniej, we wpisie pt. „Dwie kule w Kalifornii i wielebny Thomas Bayes”. Kiedy uczestnik eksperymentu przechodzi sekwencję działań, w których może popełniać błędy, jest to sekwencja sukcesów i porażek, która prowadzi do wyćwiczenia określonych wzorców zachowań lub do uświadomienia, że trzeba wykształcić nowe wzorce, lepiej dopasowane do określonego kontekstu. Pojawia się tutaj subtelne rozróżnienie między obiektywną a subiektywną definicją sukcesu lub porażki.

Każda technologia ma jakiś obiektywnie mierzalny wzorzec optymalnego wykorzystania: taki to a taki czas trwania procesu, taka to a taka liczba powtórek w poszczególnych działaniach, taka to a taka liczba błędów poszczególnych typów itd. Można zdefiniować sukces w korzystaniu z tej technologii, np. w jednokrotnym przejściu procesu księgowania faktury, jako określony stopień zbieżności z wzorcem optymalnego działania. Wszystko inne jest porażką. Sukcesem jest np. wykonanie określonego działania bezbłędnie lub w oznaczonym minimalnym czasie. Błędy w wykonaniu tych działań lub dłuższy od wyznaczonego czas wykonania to porażka.

Wiele technologii, zwłaszcza tych obsługiwanych cyfrowo przez użytkownika, zawiera mechanizmy natychmiastowej kompensacji błędów popełnianych przez tego ostatniego lub też natychmiastowego wspierania użytkownika. Podręcznikowym przykładem jest system kontroli trakcji w samochodzie albo też znana wielu osobom funkcjonalność cyfrowa, gdzie system kupowania czegoś przez Internet pyta czy wypełnić dany formularz wcześniej zapisanymi danymi użytkownika. W obecności takich rozwiązań pojawia się różnica między obiektywnie pojętym sukcesem lub porażką z jednej strony, a subiektywnym postrzeganiem sukcesu i porażki przez użytkownika technologii. Ten ostatni często nie zauważa że popełnił błąd albo że działał z nieoptymalną sprawnością, gdyż technologia „zamaskowała” to.

Wyobraźmy sobie sekwencję działań w 12 krokach, wykonywaną w środowisku eksperymentalnym. Dla każdego kroku, poza obiektywną obserwacją pytamy uczestnika eksperymentu o jego opinię, czy działał optymalnie (sukces) czy też nie (porażka). W tabeli poniżej przedstawiam dwa równoległe zapisy tej sekwencji, jeden wynikający z obiektywnej obserwacji, drugi z subiektywnego postrzegania uczestnika eksperymentu.

Krok sekwencji Obiektywna obserwacja Subiektywne wrażenie uczestnika eksperymentu
1 Porażka Sukces
2 Porażka Sukces
3 Sukces Sukces
4 Porażka Porażka
5 Porażka Sukces
6 Porażka Sukces
7 Sukces Sukces
8 Porażka Sukces
9 Porażka Sukces
10 Porażka Sukces
11 Porażka Porażka
12 Sukces Sukces

Sekwencja sukcesów i porażek wynikająca z obiektywnej obserwacji wskazuje, że użytkownik testowanej technologii odniósł więcej porażek niż sukcesów, a więc jego zachowanie wymaga zmiany, czyli wykształcenia nowego wzorca. Co więcej, ciągi porażek pomiędzy punktowymi sukcesami są coraz dłuższe w miarę upływu kolejnych sekwencji testowanego procesu. Użytkownik potrzebuje coraz więcej działań, żeby uczyć się wykonywać poprawnie przynajmniej niektóre z działań poprawnie. No, kochanieńki, trza się wziąć za siebie i odrobić lekcje.

Lekcje może jednak odrobić także sama technologia. Wbudowane do niej bufory kompensujące nieoptymalne działania ze strony użytkownika umożliwiają temu ostatniemu zupełnie inną percepcję tej samej sekwencji. W swoim własnym mniemaniu użytkownik miał więcej sukcesów niż porażek, czyli ma podstawy żeby ten konkretny wzorzec działania utrwalić. Co więcej, jego własne wrażenie jest takie, że w miarę wykonywania kolejnych działań w tej sekwencji porażki pojawiają się coraz rzadziej. Sławoj być king, innymi słowy. Sławoj nie odczuwa najmniejszej potrzeby odrabiania jakichkolwiek lekcji.

Wyobraźmy sobie teraz, że rozwijamy technologię, która po każdym eksperymencie tworzy rozwiązania pozwalające kompensować nieoptymalne działania użytkowników. Kolejne generacje samochodowych systemów kontroli trakcji są tutaj idealnym przykładem. Automatyczny termostat w systemach klimatyzacji jest innym przykładem. Taka technologia rozwija się w kierunku zwiększenia różnicy między jej własnym procesem uczenia się a procesem uczenia się jej użytkowników. To jest jeden z najbardziej chyba niepokojących aspektów sztucznej inteligencji: jesteśmy dzisiaj w stanie tworzyć coraz więcej technologii, których stosowanie pozwala nam żyć w błogim przeświadczeniu, że wszystko jest spoko a my jesteśmy panami stworzenia, podczas gdy stajemy się, obiektywnie rzecz biorąc, coraz głupsi funkcjonalnie.

No dobra, to tyle byłoby na dzisiaj tej nauki. Niezła, prawie nowa, mało jeżdżona. Tylko kilka niewielkich wgnieceń, ale to jej nadaje charakteru. Tak mi się wydaje, ale to jest tylko subiektywna opinia uczestnika eksperymentu.

The really textbook-textbook exponential growth

My editorial on You Tube

Here I go again, travelling. Not much of an expedition, just a trip to France, for a family visit of 5 days. As it is usually the case when I go for this type of trip, I am leaving sort of a tiny mess at home. This time, it is a leaking roof, and my son is supposed to handle (hopefully) the professionals, who are supposed (hopefully) to come and fix it.

This is supposed to be a scientific blog, and so I pass to scientific things. I am thinking about two, partly connected topics: my research and teaching about political systems, and a piece of research I am doing on Corporate Social Responsibility, or CSR, in the insurance industry. The connection that I see consists in defining the basic observables in large institutional structures, such as political systems or strongly regulated markets. I mean, how can I sort of know empirically what people do in such structures, with all the foam of propaganda, political and corporate, and with all those metaphysics, based on strong emotions, in the lines of “Corporations always cheat and politicians always cheat!”.

What can I sort of observe empirically, as directly, and as free of bias as possible, in political systems? Two things come to my mind in the first place: legal rules, starting with constitutions, and policies. The latter are partly wrapped in the former, mind you. Then, I am thinking about parties, or coalitions, at power. They are observable through their numerical, electoral scores and the parliamentary seats allotted. In the case of ruling coalitions, the proportions of executive offices, like ministers, deputy ministers, and secretaries of state, held by respective parties in the coalition, can be informative. Now, a little remark: anywhere outside the United States of America, a secretary of state is written in small letters, without capital initials, and means sort of a minister being at the disposition of the prime minister or of the president, inside the structure of respective offices adjacent to those two head jobs. In the United States, the Secretary of State writes himself or herself in with capital initials and is in charge of foreign policy.

As it comes to CSR in the insurance industry, I have three basic observables. One consists of business models, as I can deconstruct them through objective insight into the financials of insurance companies. The other is made of the officially declared policies of social responsibility. Finally, the third observable are the typical contractual patterns applied by insurance companies.

And so I observe those observables. I am strongly quantitative in my approach to anything, and so I am trying to nail down differences across space, as well as changes over time. There is one more thing. Whatever exact avenue I follow, ethics matter. There are certain outcomes of human actions, which can be deemed as social, in the sense of being general and widespread. We are ethical beings, as we want things and strive to achieve goals we see as valuable. If there are any general values, possible to distillate from various goals we are going for, and if these values are essentially constructive and positive, they are ethical values.

Good, that’s theory, and now I am taking on a topic of current importance. The President of my country, Andrzej Duda, has just met President Donald Trump. Apparently, he urged Donald Trump to move American troops from Germany to Poland, and to establish permanent bases of the U.S. military in Poland. That’s what the media say he apparently said he means. This is the foam that I have been just talking about. Now, I am reaching to less foamy a source, namely to the John S. McCain National Defense Authorization Act for Fiscal Year 2019. National Defense Authorisation Acts, voted each year for the next year, are federal peri-budgetary regulations. In the properly spoken Federal Budget of the United States of America, expenditures on defense are essentially presented as discretionary spending, i.e. remaining in the discretion of the executive. Still, the National Defense Authorisation act of each consecutive year gives some detail and some structure to that discretion.

So, in that John S. McCain National Defense Authorization Act for Fiscal Year 2019 three components refer to Poland. Firstly, there is Section 1280, entitled ‘Report On Permanent Stationing of United States Forces in The Republic of Poland. Then, sections 2901 and 4602 give a glimpse of actual expenditures of the U.S. military in Poland, scheduled for 2019. This report is supposed to lay out the feasibility and advisability of permanently stationing United States forces in the Republic of Poland. The type of forces taken into account are both the combat units properly spoken, and the so-called « combat enabler units », i.e. combat engineering, logistics and sustainment, warfighting headquarters elements, long-range fires, air and missile defense, intelligence, surveillance, reconnaissance, electronic warfare.

My experience with studying those things governments do and call ‘policies’ is that governments declare a policy sort of publicly, such as in this case, in an official act, when they have actually already done much in the given direction. In other words, efficient governments do something and then they announce they are going to do it. Inefficient governments declare the willingness to do something, and then they start thinking how the hell they can do it.

And so I go to numbers. Those in the National Defense Authorization Act 2019 come first. Section 2901 specifies the expenditures on Authorized Army Construction and Land Acquisition Projects. As for Poland, it makes a total of $144 400 000, and it is more than whatever the U.S. Army, the U.S. Navy, or the U.S. Air Force plan to spend in most other countries in Europe. The United Kingdom tops it with $185 130 000, and Germany closes by, mind you, with $119 000 000 to be spend by the U.S. Air Force in 2901. Section 4602 contains expenditures grouped under the heading of ‘Military Construction for Overseas Contingency Operations’, and it essentially mirrors the same amount as in Section 2901, i.e. $144 400 000.

Now, I compare these numbers with their counterparts specified in, respectively, the National Defense Authorization Act for Fiscal Year 2017  – $8 200 000 to be spent in Poland – and the National Defense Authorization Act for Fiscal Year 2018   >> $22 400 000 in the same category.

US Military Spending in Poland

 

This is an almost textbook case of exponential growth. How do I know it? I take those values for three consecutive years, thus Money(2017) = $8 200 000, Money(2018) = $22 400 000, and Money(2019) = $144 400 000, and I take natural logarithms out of those numbers. Reminder: a natural logarithm is the power, to which the Euler’s constant e = 2,7182 has to be taken in order to obtain the given number. In this case, Money(2017) = e15,91964471, Money(2018) = e16,92457152, and Money(2019) = e18,78532386.

The really textbook-textbook exponential growth is like y = eb*t, where ‘t’ is the number of the consecutive period on a timeline, and ‘b’ is a parameter. Constant exponential growth occurs when the ‘b’ coefficient is constant over time. When ‘b’ dares to grow with each consecutive period, we have an accelerating exponential growth, whose opposite is the decelerating growth with ‘b’ decreasing over time. What I do now is to assume that my three consecutive years are three periods on a timeline, which is basically what they are, but I need to do it sort of by the book, and so I have 2017 = t1, 2018 = t2, and 2019 = t3. Consequently, I divide the natural logarithms from the preceding paragraph by their respective abscissae on the timeline. That gives Money(2017) = e1*15,91964471, Money(2018) = e2*8,462285758, and Money(2019) = e3*6,261774619.

See? The ‘b’ coefficients of this particular exponential chain decrease over time. Here comes the deep logic of exponential growth: it is a type of process over time, where each consecutive step sort of stands and builds up on the shoulders of the preceding steps. Military spending addressed by U. S. Department of Defense, in Poland grows over time but the exponential pace of this growth decreases. The building up over time is impressive in absolute numbers, but it seems to decelerate.

Now, I come back from maths to politics. Those calculations indicate two things. Firstly, whatever is being said in official meetings between my domestic President, and President Trump, regarding the U.S. military presence in Poland, is already happening. The United States are increasing their military footing in Europe in general, and in Poland in particular, and it happens as President Trump loudly declares being sick of it. Secondly, this policy took its strongest kick-start a few years ago, and now it is progressively coming to maturity.

I am consistently delivering good, almost new science to my readers, and love doing it, and I am working on crowdfunding this activity of mine. As we talk business plans, I remind you that you can download, from the library of my blog, the business plan I prepared for my semi-scientific project Befund  (and you can access the French version as well). You can also get a free e-copy of my book ‘Capitalism and Political Power’ You can support my research by donating directly, any amount you consider appropriate, to my PayPal account. You can also consider going to my Patreon page and become my patron. If you decide so, I will be grateful for suggesting me two things that Patreon suggests me to suggest you. Firstly, what kind of reward would you expect in exchange of supporting me? Secondly, what kind of phases would you like to see in the development of my research, and of the corresponding educational tools?

Support this blog

€10,00

La vie d’un scientifique dans le monde réel

Mon éditorial sur You Tube

Voilà un truc intéressant, apparu un peu par accident. Mon université s’engage dans un projet commun avec une société informatique. Le but est de préparer le lancement d’une fonctionnalité digitale du type « App Builder » et le rôle de l’université est de conduire une recherche côté humain, donc d’identifier les facteurs comportementaux significatifs chez les utilisateurs potentiels de cette technologie ainsi que de prédire l’attitude desdits utilisateurs vis à vis du produit, une fois celui mis en marché. Je suis chargé de préparer un plan de recherche et je besoin de déconstruire l’idée générale à fond. Je sais par expérience que le fait de développer un sujet par écrit, sur mon blog, m’aide beaucoup à clarifier mes idées sur un sujet complexe. D’autre part, le sujet en proche de ma propre ligne de recherche que je conduis depuis des années : l’innovation et son contexte social.

Une fonctionnalité du type « App Builder » est un outil informatique qui rend possible la construction rapide d’un logiciel par des personnes qui ne sont pas ingénieurs en technologies digitales. C’est un peu comme un kit de construction type mécano : vous avez une interface principalement visuelle, qui rend possible la construction d’un logiciel à partir des composantes standardisées. Vous avez des fragments substantiels de code informatique accessibles et maniables en la forme des « pièces » visuelles sur l’écran. Vous avec, par exemple, une pièce appelée « Formulaire de contact pour l’utilisateur », une autre décrite comme « Localisation par GPS » et ainsi de suite. Vous les combinez sur votre écran et de cette façon vous construisez le code complet d’un logiciel.

Comme vous pouvez le deviner aisément, cette technologie qui sert à fabriquer d’autres technologies, d’une manière quasi-artisanale, a deux groupes d’utilisateurs : ceux qui utilisent l’AppBuilder directement, pour fabriquer des logiciels – appelons-les « utilisateurs primaires » – et ensuite ceux qui utilisent les logiciels ainsi crées, donc les « utilisateurs secondaires ». Les utilisateurs primaires sont surtout des PME, ainsi que des ONG (Organisations Non Gouvernementale) de taille pas-encore-très-respectable. La logique de leur adhésion à ce produit est basée sur le mécanisme déjà connu depuis des décennies dans le marché des vêtements pour homme. Un costume pour homme, c’est en principe une pièce de vêtement qui se faisait sur mesure. Lorsque le prêt à porter est apparu, la différence sautait – et saute toujours – aux yeux, surtout dans le cas des messieurs qui ne sont pas exactement bâtis comme Tarzan. C’est ainsi que les tailleurs ont inventé un type de couture que les Anglo-Saxons appellent « bespoke » et pour laquelle je n’ai pas trouvé de traduction exacte en français. Le bespoke c’est comme du semi-sur-mesure. Le costume est pré-taillé et sa structure contient des petites pièces astucieusement masquées dans les endroits critiques, comme la ceinture, les hanches ou les épaules. Ces petites pièces rendent possible un ajustement poussé à la silhouette d’un personne précise. Le tailleur prend la mesure du client et ajuste le vêtement à sa silhouette. Le tout est beaucoup moins coûteux et plus rapide que du sur mesure strictement dit, tout en gardant l’élégance dure à trouver dans du prêt-à-porter typique.

Un AppBuilder c’est du digital façon bespoke. Il y en a déjà pas mal d’AppBuilders offerts sur le marché et ils présentent des régularités intéressantes. Premièrement, la majorité d’entre eux est accessible aux utilisateurs primaires sur la base d’un abonnement mensuel et cependant il en reste une minorité qui n’affiche pas du tout de conditions standardisées d’utilisation et qui présentent la collaboration avec chaque utilisateur primaire comme un projet singulier avec des modalités business tout aussi singulières. Deuxièmement, certains de parmi ces AppBuilders – je ne saurais pas dire si c’est une majorité ou bien une minorité – offrent des versions gratuites de base. Nous avons donc une proportion solide du type « majorité – minorité des cas » accompagnée d’un phénomène apparemment aléatoire dans sa manifestation.

L’abonnement mensuel suggère un lien durable entre l’utilisateur primaire d’un AppBuilder et son fournisseur. C’est logique : une fois que j’ai construit un logiciel mobile pour les clients de ma PME, j’aurais besoin de le parfaire et transformer à mesure que d’autres logiciels de même type apparaîtront sur le marché. L’expression « à mesure que » est importante. Le type d’innovation dont je vais avoir besoin dans ce logiciel c’est du progressif, à petits pas, difficiles à planifier en avance. La boîte à outils que j’avais utilisé la première fois doit donc être à portée de la main et en plus les outils dans la boîte feraient mieux de s’adapter aux nouvelles exigences du marché. Le fournisseur de l’utilité AppBuilder garantit donc à son utilisateur primaire l’accès à la boîte digitale à outils ainsi que leur mise à jour régulière.

Ce type de relation « client – fournisseur » implique que la capacité d’innovation digitale de la part du client reste plus ou moins constante. L’utilisateur primaire d’un AppBuilder de ce type développe l’habitude d’utiliser la boîte à outils fournie, sans modifier sa propre capacité d’innovation. En revanche, lorsque le fournisseur d’un AppBuilder propose, au lieu d’un abonnement, un contrat ponctuel spécifiquement adapté à l’utilisateur primaire donné, ceci implique un schéma différent. Il y a, là, une possibilité implicite qu’une fois le logiciel construit, la relation ultérieure entre le fournisseur de l’AppBuilder et l’utilisateur primaire peut cesser. Ceci, à son tour, exige que ledit utilisateur primaire développe une capacité nouvelle d’innovation digitale. Un transfert de technologie de la part du fournisseur est logiquement à espérer. Si, en tant qu’utilisateur primaire d’un AppBuilder, je décide de naviguer, dans l’avenir, les eaux digitales incertaines sans l’assistance de mon fournisseur initial, il me faut le code-source du logiciel. Sinon, je ne pourrais pas modifier mon outil.

Ainsi donc, l’occurrence de ces deux schémas contractuels distincts dans le marché des AppBuilders – le schéma abonnement comme solution majoritaire contre celui basé sur un contrat ponctuel dans une minorité des cas – suggère que le marché d’utilisateurs primaires des AppBuilders est principalement composé d’entités à capacité plus ou moins constante d’innovation digitale, avec une sous-population faite d’organisations capables de développer leur capacité dans ce domaine. De la part du fournisseur de l’utilité type AppBuilder, ceci implique le développement de deux types distincts de compétences en termes de relations-client. D’une part, il faut une compétence d’accompagnement digital d’utilisateur primaire. Il faut rester à jour en ce qui concerne les besoins du client, l’évolution de son organisation ainsi que de son marché, pour préparer des blocs mécano correspondants dans l’AppBuilder. D’autre part, le fournisseur d’un AppBuilder peut ou doit développer la capacité de transférer à son client une partie de la technologie de base, y compris le code-source du logiciel, en cas où le client développe sa propre capacité d’innovation digitale. Ce deuxième cas donne lieu à des solutions intéressantes, par exemple des codes-source multiples (où chaque utilisateur primaire génère, de facto, un code-source individuel pour son logiciel) ou des contrats bien astucieux de transfert de propriété intellectuelle.

L’occurrence apparemment aléatoire des versions gratuites de certains AppBuilders suggère que certains de parmi leurs fournisseurs développent comme un surplus d’innovation digitale : des trucs qui sont toujours utiles pour des applications simples et possibles à utiliser comme appât marketing mais pas suffisamment impressionnants pour qu’un utilisateur primaire sérieux veuille bien payer pour y avoir accès. Ceci, à son tour, implique une course technologique extrêmement rapide dans le secteur, tellement rapide que les créateurs des technologies n’ont même pas de temps suffisant pour exploiter commercialement à fond tout ce qu’ils développent.

Le raisonnement que je viens de présenter débouche sur la question suivante : comment organiser l’étude de marché pour un nouvel AppBuilder de façon à ce que l’AppBuilder en question soit compétitif ? Voilà un carrefour intéressant de la science et du business.

Qu’est-ce que je veux savoir lorsque je lance une nouvelle version du produit qui existe déjà ? C’est une bonne question. Puisque le produit existe déjà, et sa technologie évolue tellement vite que des retombées de ladite évolution sont accessibles gratuitement, il est presque complètement inutile de lancer des sondages, basés sur des questionnaires standardisés du genre « Qu’espérez-vous d’un AppBuilder ? ». Les attentes ainsi formulées sont un pâle reflet de ce qui se passe sur le marché. Comme je viens de le discuter, les proportions entre les compétences digitales d’utilisateurs typiques des AppBuilers, d’une part, et le degré de perfectionnement technologique de ces derniers d’autre part sont ridiculement déséquilibrés. Ces utilisateurs ne sont tout simplement pas capables de dire ce qu’ils veulent puisqu’ils n’ont pas la base se savoir nécessaire pour verbaliser ce qu’ils veulent.

Dans le passé, avant que j’eus choisi la carrière académique, je travaillais précisément dans l’étude de marché comme profession. Par expérience, je sais comme profondément vraie est cette phrase de Bernard Bosanquet : « (…) souvent, lorsque les gens ne savent pas ce qu’ils veulent dire, ils néanmoins veulent dire quelque chose de très grande importance ». En d’autres mots, les questionnaires typiques, faits des questions standardisées, comme dans les sondages s’opinion publique que vous pouvez voir à la télé, sont, parmi tous les outils de recherche, les plus difficiles à utiliser correctement et par ce fait, la plupart de leurs résultats sont tout simplement erronés. L’étude de marché vraiment digne de ce nom exige que l’on se pose des questions fondamentales, tout comme dans une recherche scientifique strictement dite, et que l’on applique toute la rigueur scientifique à trouver des réponses.

Voilà donc que j’ai une occasion toute prête de se tourner vers l’une de mes petites obsessions intellectuelles : la recherche behavioriste. S’il est futile d’étudier ce que les gens disent qu’ils pensent qu’ils veulent, il peut être intéressant ce qu’ils font. Les AppBuilders sont utilisés par les entreprises et les organisations non-commerciales de taille relativement petite et de compétence digitale relativement modeste pour construire rapidement des applications mobiles qui servent à créer, maintenir et développer des relations-clients. C’est le cœur du phénomène étudié de façon scientifique : la façon dont les utilisateurs primaires potentiels d’un AppBuilder gèrent leurs relations-clients.

Une façon de faire quelque chose est une séquence. L’action B se répète, encore et encore, après l’action A et avant l’action C. Si je contacte une agence de voyages, par exemple, ses employés vont se comporter en une séquence d’actions (interview en ce qui concerne mes attentes, un devis personnalisé des voyages, deux appels de relance par téléphone etc.). Point de vue business, l’application mobile qu’une telle agence pourrait offrir à ses clients remplacerait cette séquence d’actions avec quelque chose de plus efficient, au moins en principe. C’est objectivement ce qu’un AppBuilder peut donner, en termes de valeur ajoutée, à cette agence de voyages : une technologie pour cloner – rapidement et facilement – leur séquences typiques d’actions dans les relations-clients en une forme d’application mobile.

J’ai donc pensé à une première phase qualitative de cette étude de marché, basée sur un échantillon d’interviews en profondeur dans les PME et des organisations non-commerciales, précisément en vue d’identifier des schémas comportementaux récurrents. Parmi d’autres détails méthodologiques, une question émerge : la taille de l’échantillon. Dans l’univers du qualitatif, il y a une foule d’opinions à ce propos. En fait, chaque chercheur a sa petite théorie. Ce que je peux définir comme consensus méthodologique assume des échantillons entre 20 et 70 interviews. Je me suis demandé s’il y a une méthode rationnelle de calculer ça.

J’avais commencé par assumer que dans une série d’interviews qualitatifs en profondeur, chaque interview devrait fournir des informations pertinentes pour optimiser les interviews suivantes. C’est une démarche heuristique. J’avais retourné aux notions fondamentales de la méthode de Bayes : chaque expériment consécutif permet de diviser l’univers entiers d’occurrences possibles en deux champs distincts, d’habitude possibles à décrire comme « succès » ou « échec ». Je me suis dit, aussi, que j’ai tout le droit d’attendre à ce que ces interviews marchent, en pratique, suivant la règle de Pareto : 20% d’entre elles vont fournir 80% d’informations utiles. Très intuitivement, j’ai donc calculé, encore une fois en accord avec la logique de Bayes, le coefficient binomial pour une séquence faite de 2 succès sur 10 essais. Ça fait {10!/[(10!*(10-2)!)]} = 45. Le symbole « ! » veut dire, bien sûr, une factorielle. Je sais que c’est vraiment très intuitif, mais une intuition cohérente vaut mieux que rien.

Il y a un second truc, dans cette étude de marché : l’expérimentation avec les prototypes de l’AppBuilder. A ce respect précis, une question méthodologique a surgi : comment savoir quelles caractéristiques de l’AppBuilder sont les plus importantes pour les utilisateurs. La façon la plus simple de se faire une opinion là-dessus est de demander les opinions d’utilisateurs primaires. Encore, pour moi, c’est encore une fois demander ce que les gens disent qu’ils pensent qu’ils attendent de la part de quelque chose qui n’existe pas encore. J’ai donc pensé à une approche behavioriste. Logiquement, si une modification de la caractéristique donnée d’une utilité digitale affecte le comportement d’utilisateurs relativement plus que des modifications d’autres caractéristiques, ce trait précis a la capacité de modifier le comportement, donc il est plus important que les autres. J’ai donc pensé à un expériment où la société d’informatique construit des prototypes dotés des caractéristiques hyperboliques, genre icônes vraiment petites en comparaison avec des icônes très grosses. Chaque hyperbolisation est testée séparément en vue de son impact sur le comportement d’utilisateurs dans l’environnement expérimental.

Voilà un échantillon de la vie d’un scientifique dans le monde réel, lorsqu’il faut utiliser la science pour trouver son chemin dans l’espace social. Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ?

Vous pouvez donner votre support financier à ce blog

€10,00

Dwie kule w Kalifornii i wielebny Thomas Bayes

Wstępniak video na You Tube

Kontynuuję moją wycieczkę pokazową po krainie na granicy matematyki i codzienności. Tym razem chcę omówić nieco obszerniej podstawy czegoś, czym wykładowcy straszą (czasami) studentów na zajęciach z podstaw statystyki. „Myślicie, że te podstawy są trudne ? To poczekajcie, aż zaczniecie się uczyć statystyki Bayesowskiej: to dopiero jest trudne”. Chcę przybliżyć moim czytelnikom podstawy właśnie tego straszaka, czyli statystyki Bayesowskiej.

Aha, no tak. We wcześniejszych wpisach zapowiadałem, że będę omawiał sposób, w jaki podstawowe twierdzenia nauk społecznych można zastosować w praktyce. Przyjrzeliśmy się już dwóm takim twierdzeniom. Pierwsze, całkiem banalnie mówi: jesteśmy zbiorowością (patrz „Gra w tożsamość”). Drugie postuluje, że prawie wszystko co robimy, robimy w sposób powtarzalny, według powtarzalnych wzorców, a każdy taki wzorzec można rozpisać jako sekwencję (patrz „Czasami coś odrasta”). Pora na trzecie: powtarzalne wzorce zachowań tworzymy poprzez uczenie się na kolejnych eksperymentach.

Wszystko zaczęło się w roku 1763 roku, chociaż może nieco wcześniej. W dniu 23 grudnia 1763 pan John Canton, redaktor czasopisma „Philosophical Transactions”, wydawanego nakładem Królewskiego Towarzystwa Naukowego, otrzymał list od pana Richarda Price’a (nie mylić ze współcześnie żyjącym pisarzem o dokładnie tym samym imieniu i nazwisku), buntowniczego kaznodziei związanego z architektami amerykańskiej niepodległości, podobno głównie Benjaminem Franklinem. List był wysłany 10 listopada 1763 roku i rekomendował panu Johnowi Cantonowi, jako materiał na artykuł, esej napisany (podobno) przez nieżyjącego już wówczas przyjaciela Richarda Price’a, wielebnego Thomasa Bayesa. Price twierdził, że wypełniając ostatnią wolę nieżyjącego Bayesa, porządkował jego osobiste dokumenty i znalazł wśród nich właśnie ten. Redaktor John Canton musiał być pod sporym wrażeniem nadesłanego tekstu, ponieważ ukazał się on jeszcze w tym samym, 1763 roku, którego zostało wtedy tylko 7 dni, pod tytułem: „An Essay towards Solving a Problem in the Doctrine of Chances[1].

Oto jak Richard Price przedstawiał w swym liście do Johna Cantona główną myśl Thomasa Bayesa: „[…] Jego zamiarem było znaleźć metodę, poprzez którą moglibyśmy wydać osąd na temat prawdopodobieństwa że jakieś zdarzenie będzie miało miejsce, w danych okolicznościach, w oparciu o supozycję że nie wiemy nic poza tym, że w takich samych okolicznościach wydarzyło się to już pewną liczbę razy i nie powiodło się w jakiejś innej liczbie razy. […] Dodaje on, że nie jest trudno to wyliczyć, pod warunkiem posiadania jakiejś reguły dla oszacowania szans, że prawdopodobieństwo zdarzenia doskonale nam nieznanego mieści się między jakimikolwiek znanymi stopniami prawdopodobieństwa, jeszcze przed wykonaniem jakichkolwiek eksperymentów […]”.

Richard Price przedstawił redaktorowi Johnowi Cantonowi myśl swojego przyjaciela z prawie doskonałą wiernością. Prawie, gdyż Thomas Bayes wprowadzał jednak element eksperymentu w swoim modelu matematycznym. W celu wyjaśnienia logiki tego eksperymentu i jego związku z całą przedstawianą tu teorią, poniżej przedstawiam moją własną reprodukcję tzw. prostokąta Bayesa. Narysowałem go tak wiernie w stosunku do oryginału z 1763 roku, jak tylko mogłem. Na razie oznaczenia prostokąta niewiele Wam powiedzą, ale wyjaśniam je dalej pod rysunkiem. W moich wyjaśnieniach staram się streścić i odtworzyć oryginalny wywód Thomasa Bayesa też tak wiernie, jak to możliwe.

Prostokąt Bayesa

Wyobraźmy sobie, że wszystko co może się wydarzyć przedstawiamy jako płaszczyznę, a dokładnie jako skończony prostokąt ABCD wyznaczony na dwuwymiarowej płaszczyźnie; podobne geometryczne podejście jak w przypadku rozkładu normalnego ( patrz „Czasami coś odrasta” ). Wyobraźmy sobie, że mamy dwie kule: W i O. Stajemy twarzą do naszego prostokąta tak, że bok AB jest przed nami, jak rozciągnięta poprzecznie linka. W sumie tyłem też można stanąć, ale wtedy trzeba rzucać przez ramię; matematycznie nie ma to większego znaczenia. Najpierw rzucamy kulą W. Nie musimy jej nadawać żadnego konkretnego celu: po prostu staramy się, żeby potoczyła się po prostokącie ABCD. Trajektorię, jaką pokonała nasza kula W, oznaczamy jako odcinek oS.

Teraz rzucamy kulą O, ale przed rzutem zastanawiamy się, gdzie może trafić w nasz prostokąt ABCD. Pierwsza możliwa odpowiedź brzmi: gdziekolwiek. Druga, alternatywna odpowiedź brzmi jednak: albo w prostokąt oBCS, albo w przyległy do niego prostokąt AoSD. Rozumiecie ? Pierwszy rzut – kulą W – podzielił nam całą przestrzeń możliwych zdarzeń na dwie części. Pytanie o to, co się stanie następnie można uprościć: albo walnie w jedną część przestrzeni, albo w drugą. Sukces albo porażka.

Geometria ma swoje prawa: prawa proporcji. Kiedy już rzuciliśmy kulą W i podzieliliśmy w ten sposób nasz prostokąt ABCD na dwa mniejsze – oBCS oraz AoSD – prawdopodobieństwo że kolejny rzut kulą O trafi w któryś z nich jest zależny od ich powierzchni. Im większy jest prostokąt oBCS w stosunku do macierzystego ABCD, tym większa szansa że kula O trafi właśnie w niego. Ponieważ to są prostokąty, naszą proporcję prawdopodobieństwa można nawet jeszcze bardziej uprościć: prawdopodobieństwo trafienia w prostokąt oBCS jest takie, jak proporcja długości odcinka oB do długości odcinka AB. Genialnie proste.

W ten sposób działa nasz umysł. Wchodzimy na nieznany teren, na przykład do nowego biznesu albo zaczynamy nową pracę. Najpierw określamy granice, w których cokolwiek może się wydarzyć, czyli prostokąt ABCD. Następnie zaczynamy eksperymentować: rzucamy kulą W. Próbujemy nawiązać pierwsze kontakty, przeprowadzić pierwsze własne pomysły itd. Każda kolejna taka próba jest jak rozpoczynany wciąż na nowo eksperyment Bayesa. Rzut kulą W dzieli nam przestrzeń wszystkiego, co się może zdarzyć na dwie kategorie: sukces albo porażkę.

W ten sposób jednostki i zbiorowości uczą się nowych wzorców zachowań. Coś robimy. Spośród wszystkiego co się może zdarzyć, to co robimy trafia albo w prostokąt oBCS (sukces, dostajemy efekty, których oczekiwaliśmy po naszym działaniu) albo w AoSD (porażka, czyli kicha, czyli nam nie wyszło). Sekwencja sukcesów utwierdza nas w przekonaniu, że nasze działanie ma sens i z każdym sukcesem utrwalamy odpowiedni wzorzec zachowań. Sekwencja porażek skłania do refleksji, że w naszym doskonałym planie być może powinniśmy wnieść drobne korekty i następnie próbujemy znowu. Jeżeli w całkowitym zbiorze n prób będziemy mieli większość sukcesów, utrwalimy nasze wzorce zachowań. W teorii uczenia się jest to określane jako wykształcanie świadomej kompetencji. Jeżeli natomiast w sekwencji n prób mamy większość porażek, wtedy będziemy mnożyć wciąż nowe warianty zachowań i sprawdzać, który przynosi efekty. Takie zjawisko jest z kolei określane jako budowanie świadomej niekompetencji, czyli budowanie wiedzy na temat tego, kiedy nam nie wychodzi.

Sformalizujmy nieco to rozumowanie. Jeżeli na 10 prób mamy 70% prawdopodobieństwo ośmiu sukcesów i 2 porażek, całe nasze zachowanie będzie szło w kierunku utrwalania obecnie rozgrywanych strategii i kształtowania świadomej kompetencji. Jeżeli natomiast będziemy mieli 70% szans na 8 porażek i 2 sukcesy, nasze działania będą szły w kierunku budowania świadomej niekompetencji i szukania nowych rozwiązań. Prawdopodobieństwo, które starał się wyliczyć wielebny Thomas Bayes – prawdopodobieństwo p sukcesów na n prób – to obiektywny stan rzeczywistości, który nadaje kierunek naszym procesom uczenia się.

Wracam do kwestii proporcji. Przypuśćmy, że nasz pierwszy rzut kulą W wyjdzie prawie dokładnie pośrodku prostokąta ABCD. Wtedy proporcja pomiędzy odcinkiem oB i całym bokiem AB będzie bliska 50%. Prawdopodobieństwo sukcesu w kolejnym rzucie, tym kulą O, jest również bliskie 50%. Prawdopodobieństwo, że sekwencja kolejnych rzutów kulą O będzie sekwencją sukcesów, która utrwali nasz wzorzec zachowań, jest prawie równe prawdopodobieństwu, że będzie to sekwencja porażek i skłoni nas do poszukiwania wciąż nowych rozwiązań.

Nooo, nareszcie ! Pierwsza praktyczna wskazówka od wielebnego Bayesa ! Jeżeli nasz system wartości jest wyostrzony, tzn. bardzo jasno określa czego chcemy i co określamy jako sukces – czyli nasz prostokąt oBCS jest wyraźnie większy albo wyraźnie mniejszy od AoSD – wtedy potrafimy świadomie zbudować wyraźne rozróżnienie między doświadczalnym uczeniem się skierowanym na utrwalanie naszych wzorców zachowań, a uczeniem się ukierunkowanym na szukanie czegoś nowego. Jeżeli natomiast nasz system wartości jest taki cośkolwiek nijaki i nie wiemy dokładnie, na czym nam zależy, wtedy trudno jest nam określić czy lepiej utrwalać to, co już robimy czy też może szukać nowych rozwiązań. Czyli, tak po ludzku, jak wiemy czego chcemy to uczymy się szybciej, a jak nie wiemy, to wolniej.

Druga praktyczna wskazówka, taka na wielkie okazje: nasz system wartości jest określony przez nasze doświadczenie. Zawsze gdzieś tam u zarania i w kolebce zdarzeń był ten rzut kulą W, który podzielił prostokąt naszej rzeczywistości na dwie kategorie. Czasami warto się zastanowić, szczególnie kiedy czujemy że coś jest naprawdę nie tak, czy przypadkiem nie byłoby warto zainicjować nowej sekwencji i rzucić tą kulą W po raz kolejny.

No dobra, no to jakie jest w końcu to prawdopodobieństwo p sukcesów na n prób ? Thomas Bayes podszedł do tego w sposób, który dzisiaj znamy jako rozkład dwumianowy. Nie byłbym belfrem z krwi i kości, gdybym teraz nie zrobił na ten temat szczegółowego wykładu. Mamy prawdopodobieństwo sukcesu a, że nasza kula O walnie w jeden prostokąt wykreślony przez uprzedni rzut kulą W) oraz prawdopodobieństwo porażki b, czyli że kula O trafi niezupełnie w ten właśnie prostokąt. Mamy n prób, gdzie oczekujemy p sukcesów oraz q = n – p porażek. Z tych zmiennych robimy dwumian Newtona: (a + b)p + q.

Jeżeli ulegniemy pokusie dodawania w nawiasie, czyli jeżeli dodamy a + b, wtedy wyjdzie nam 1 – czyli 100% – i to samo wyjdzie nam po podniesieniu do jakiejkolwiek potęgi. Jeżeli jednak zachowamy się zgodnie z logiką dwumianu Newtona, to otrzymamy wielomian, gdzie jednym ze składników będzie: {n!/[p!(n-p)!]}*ap*bq. Ten właśnie składnik wielomianu jest prawdopodobieństwem otrzymania p sukcesów w n próbach. W składniku tym mamy dwa odrębne czynniki. Z jednej strony mamy czynnik ap*bq , czyli ściśle pojęte prawdopodobieństwo że zdarzy się p sukcesów i q porażek. Drugi czynnik to raczej współczynnik – tzw. współczynnik wielomianu – czyli {n!/[p!(n-p)!]}, który odzwierciedla liczbę możliwych sposobów, na które możemy mieć p sukcesów i q porażek na n prób.

Ten drugi czynnik, czyli {n!/[p!(n-p)!]}, ma ciekawą własność. Wyobraźmy sobie, że mamy 100 prób, czyli n = 100 oraz że chcemy sprawdzić prawdopodobieństwo osiągnięcia 33 sukcesów i 67 porażek. Wyrażenie {n!/[p!(n-p)!]} daje nam wtedy wynik 294 692 427 022 540 894 366 527 900 sposobów wystąpienia takiej kombinacji. Strasznie dużo. Co ciekawe, tyle samo, co liczba możliwych kombinacji 67 sukcesów i 33 porażek. Teraz chcę 58 sukcesów na 100 prób. Wyrażenie {n!/[p!(n-p)!]} jest wtedy równe 28 258 808 871 162 574 166 368 460 400. Jeszcze bardziej strasznie dużo, dokładnie dwa rzędy wielkości więcej co poprzednie strasznie dużo. Jeżeli mogę zadowolić się tylko 3 sukcesami, mogę je otrzymać w 100 próbach na {n!/[p!(n-p)!]} = 161 700 sposobów, tyle samo zresztą co 97 sukcesów na 100 prób. Ciągle dużo ale już nie tak strasznie dużo.

Rozwijam teraz dalej myśl, że teoria Thomasa Bayesa odzwierciedla nasze procesy uczenia się poprzez eksperymentowanie. Powyższy pokaz obliczeniowy wskazuje na ciekawą własność tego procesu. Proces eksperymentowania i uczenia się, gdzie liczba sukcesów jest zbliżona do liczby porażek, czyli gdzie utrwalanie wzorców zachowań (rozwijanie świadomej kompetencji) jest mniej więcej zrównoważone z szukaniem nowych rozwiązań (rozwijaniem świadomej niekompetencji) może się wydarzyć na więcej możliwych sposobów niż procesy skrajne, gdzie mamy albo prawie wyłącznie porażki (prawie wyłącznie uczymy się, co nam nie wychodzi) albo prawie same sukcesy i pracowicie utwierdzamy się w doskonałości naszych metod działania.

To wydarzyło się pod koniec 1763 roku. Inna ciekawa rzecz wydarzyła się całkiem niedawno. W dniu 10 sierpnia 2018 roku gubernator stanu Kalifornia podpisał i przekazał Sekretarzowi Stanu akt prawa stanowego, nakreślający plan dla przejścia gospodarki całego stanu Kalifornia w 100% na energie odnawialne[1]. Temat energii odnawialnych jest drogi mojemu sercu, prowadzę na ten temat badania i staram się tworzyć koncepcje biznesów dla rozwoju energii odnawialnych. Teraz staram się wykorzystać ten konkretny przypadek dla zilustrowania zasad racjonalnego eksperymentowania zgodnie z filozofią matematyczną Thomasa Bayesa. Tak jest, wezmę artykuł napisany w osiemnastym wieku i zastosuję jego założenia teoretyczne do interpretacji działań podejmowanych przez stan Kalifornia dla przejścia na energie odnawialne, w dwudziestym pierwszym wieku.

We wstępie owej kalifornijskiej ustawy możemy się dowiedzieć, iż przed jej uchwaleniem niejaka PUC, czyli Public Utilities Commission, czyli po naszemu Komisja ds. Infrastruktury Publicznej, miała prawo egzekwować od wszystkich detalicznych dostawców energii elektrycznej aby w ich koszyku dostaw energie odnawialne miały następujący udział: 25% w dniu 31 grudnia 2016, 33% w dniu 31 grudnia 2020, 40% dnia 31 grudnia 2024, 45% trzydziestego pierwszego grudnia 2027 oraz 50% w dniu 31 grudnia 2030. Tenże sam wstęp oznajmia, że stan (Kalifornia) wziął i się zastanowił i stwierdził, że jak się da tyle, to pewnie da się i więcej, no i zrewidowano podanej powyżej progi. Teraz postanawia się, że trzydziestego pierwszego grudnia 2024 roku elektryczność ze źródeł odnawialnych ma stanowić 44% sprzedaży detalicznej i ma to podskoczyć do 52% w dniu 31 grudnia 2027, aby osiągnąć 60% w dniu 31 grudnia 2030 roku.

Jestem ekonomistą, więc lubię wykresy. Poniżej, możecie zobaczyć tą zmianę polityki energetycznej właśnie w postaci wykresu.

Ustawowe cele stanu Kalifornia w zakresie udziału energii odnawialnych w detalicznej sprzedaży elektryczności

Pytanie nr 1: w jaki sposób cały stan – w zasadzie cały kraj, bo Kalifornia jest ludnościowo większa od Polski – może takie progi jak wymienione powyżej ustalić w sposób racjonalny i realistyczny ? Pytanie nr 2: skąd cały taki kraj wie, że można te progi podnieść ?

Przypuśćmy, że każdy z Was, moi czytelnicy, chce takie wyliczenia przeprowadzić. Skąd wiadomo, jaki procent energii odnawialnych można wyznaczyć jako cel na przyszłość dla społeczności liczącej sobie ponad 30 milionów ludzi ? Wiadomo, czego nie mamy:  nie mamy żadnej reprezentatywnej próbki wielodziesięciomilionowych populacji wraz z ich proporcjami elektryczności dostarczanej ze źródeł odnawialnych. Na tym poziomie analizy nie mamy więc podstaw do rozumowania w kategoriach typowego rozkładu statystycznego ( patrz „Czasami coś odrasta” ). Jak więc podejść do sprawy racjonalnie i wyznaczyć cele, które mają szanse być zrealizowane ?

Politycznie najprościej jest wyznaczyć takie cele, o których wiemy na pewno że zostaną zrealizowane. Jako prawodawca mamy więc przed sobą twarde prognozy, że w roku 2024 odsetek energii odnawialnych wyniesie 46 – 48% i do ustawy wpisujemy 44% itd. Jeżeli jednak myślimy nieco bardziej ambitnie i chcemy stworzyć rzeczywistą strategię przejścia, trzeba zapuścić się w krainę ryzyka i przybić jakiś zakład z losem.

No dobra, ale miało być też o Kalifornii i o jej przejściu na energie odnawialne. W zasadzie wszędzie na świecie przejście to ma szczególną postać, odmienną od tego co działo się jakieś 100 – 150 lat temu, kiedy z kolei przestawialiśmy się na energię z paliw kopalnych. Wtedy, w przeszłości, węgiel, gaz czy ropa naftowa zastępowały młyny wodne czy wiatrowe, tudzież domowe piece, w postaci wielkich skoków. Otwierała się nowa duża elektrownia i za jednym zamachem „przestawiała” na paliwa kopalne całe duże społeczności. Z energiami odnawialnymi jest przeciwnie. Z wyjątkiem niektórych miejsc na świecie (np. kompleksu słoneczno-cieplnego Ouarzazate w Maroku), energie odnawialne pojawiają się w postaci stosunkowo niewielkich, lokalnych instalacji. Przejście na energie odnawialne to stopniowe przechodzenie lokalnych społeczności na „paczki” energii pochodzącej z wody, wiatru czy słońca.

Mamy tu do czynienia z procesem zbiorowego uczenia się. Najpierw zbiorowość rzuca kulą W, jak u Bayesa i jest to zresztą rzut wielokrotny. Zaczyna się od niewielkiej liczby lokalnych instalacji opartych na energiach odnawialnych. Przedsięwzięcia te są eksperymentem, który daje wiedzę na temat tego, co można uznać za sukces ekonomiczny i technologiczny, a co jest porażką. Każde kolejne przedsięwzięcie, spośród tych pionierskich, dostarcza nowych informacji. Przychodzi moment, kiedy „sukces” i „porażka” są na tyle ściśle zdefiniowane, że można pokusić się o określenie ich prawdopodobieństwa.

Według danych udostępnianych przez U.S. Energy Information Administration, przeciętny mieszkaniec Kalifornii zużywa rocznie 199 milionów Btu (British Thermal Units) energii, czyli ok. 58 321 kilowatogodzin. Ludność Kalifornii, zgodnie z danymi World Population Review, to obecnie  39 776 830 osób. Jeżeli strukturę rynku energii w Kalifornii wyrażamy w procentach, to dzielimy ten rynek na „paczki”, z których każda równa jest 1% tegoż rynku, czyli jest to 1% * 39 776 830 osób * 58 321 kilowatogodzin =  23 198 301 877,32 kilowatogodzin = 23 198,3 gigawatogodzin. Jeżeli ustawa zakłada, że

Wskaźniki procentowe zawarte w cytowanej tu ustawie Parlamentu Stanu Kalifornia można zinterpretować jako miary prawdopodobieństwa. Jest to prawdopodobieństwo, że losowo wybrana „paczka” energii równa 23 gigawatogodziny z groszami wyląduje w prostokącie „energie odnawialne” a nie w prostokącie „energia z paliw kopalnych”. Innymi słowy, zbiorowość stanu Kalifornia rzuca już drugą kulą, czyli kulą O. W ustawie jest wpisane założenie, że prawdopodobieństwo to będzie rosło w czasie. Założenie to jest nawet wzmocnione przez fakt, że najnowszy tekst tych przepisów zakłada wyższe prawdopodobieństwo niż poprzednia wersja. Zgodnie z filozofią matematyczną Bayesa jest tylko jeden sposób, aby to prawdopodobieństwo wzrosło: prostokąt odpowiadający kategorii „sukces w eksploatacji energii odnawialnych” musi być coraz większy w relacji do całkowitych rozmiarów prostokąta ABCD, czyli całego uniwersum zdarzeń. Innymi słowy, definicja sukcesu musi być coraz bardziej pojemna.

Jest jeszcze drugi poziom logiczny w tym rozumowaniu. Pamiętacie wyliczenia współczynnika wielomianu sprzed kilku akapitów ?No wiecie, tego {n!/[p!(n-p)!]}. Pokazałem wtedy wyliczenia dla 100 prób, a więc tak jakby pokazywał je dla 100 paczek energii, z których każda ma te tam 23 gigawatogodziny z lekkim hakiem, w sensie że w Kalifornii, bo u nas w Polsce to taka paczka miałaby jakieś 11 gigawatogodzin. Oni zużywają więcej energii na transport i na klimatyzację. W każdym razie, logika rachunku dwumianowego, opartego na rozumowaniu Thomasa Bayesa sugeruje, że istnieje 100 891 344 545 564 193 334 812 497 256 sposobów uzyskiwania ze źródeł odnawialnych 50 paczek energii na 100 możliwych. To był kiedyś wyznaczony cel dla Kalifornii na rok 2030. Jest to jednocześnie największa możliwa liczba kombinacji sukcesów i porażek w 100 próbach. Innymi słowy, jest to proces uczenia się o największym potencjale przynoszenia informacji z kolejnych eksperymentów. Teraz, od 10 września, ten cel został zrewidowany do 60%, a więc do 60 paczek energii na 100 możliwych. Jest 13 746 234 145 802 811 501 267 369 720 sposobów uzyskania 60 sukcesów na 100 prób. To jest ponad siedem razy mniej niż w przypadku 50 sukcesów. Nowe ustawodawstwo stanu Kalifornia przesunęło moment maksymalnie efektywnego, zbiorowego uczenia się wstecz w czasie, z roku 2030 na moment gdzieś między rokiem 2024 a 2027. Ciekawe.

[1] Senate Bill No. 100, CHAPTER 312, An act to amend Sections 399.11, 399.15, and 399.30 of, and to add Section 454.53 to, the Public Utilities Code, relating to energy. [Approved by Governor September 10, 2018. Filed with Secretary of State September 10, 2018.]

 

[1] „An Essay towards Solving a Problem in the Doctrine of Chances”. By the Late Rev. Mr.Bayes, F. R. S. Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S. ; Author(s): Mr. Bayes and Mr. Price; Source: Philosophical Transactions (1683-1775), Vol. 53 (1763), pp. 370-418. Published by: Royal Society; Stable URL: http://www.jstor.org/stable/105741

 

Shut up and keep thinking

This time, something went wrong with the uploading of media on the Word Press server, and so I am publishing my video editorial on You Tube only. Click here to see and hear me saying a few introductory words.

I am trying to put some order in all the updates I have written for my research blog. Right now, I am identifying the main strands of my writing. Still, I want to explain I am doing that sorting of my past thought. I had the idea that, as the academic year is about to start, I could use those past updates as material for teaching. After all, I am writing this blog in sort of a quasi-didactic style, and a thoughtful compilation of such content can be of help for my students.

Right, so I am disentangling those strands of writing. As for the main ideas, I have been writing mostly about three things: a) the market of renewable energies b) monetary systems and cryptocurrencies, as well as the FinTech sector, c) political systems, law and institutions, and d) behavioural research. As I am reviewing what I wrote along these three lines, a few distinct patterns of writing emerge. The first are case studies, focused on interpreting the financial statements of selected companies. I went into four distinct avenues with that form of expression: a) companies operating in the market of renewable energies b) investment funds c) FinTech companies and, lately, d) film and TV companies. Then, as a different form of my writing, come quantitative studies, where I use large databases to run correlations and linear regressions. Finally, there are whole series of updates, which, fault of a better term, I call ‘concept development’. They give account of my personal work on business or scientific concepts, and look very much like daily reports of creative thinking.

Funny, by the way, how I write a lot about behavioural patterns and their importance in social structures, and I have fallen, myself, into recurrent behavioural patterns in my writing. Good, so what I am going to do is to use my readings and findings about behavioural patterns in order to figure out, and make the best possible use of my own behavioural patterns.

How can I use my past writing for educational purposes? I guess that my essential mission, as an educator, consists in communicating an experience in a teachable form, i.e. in a form possible to reproduce, and that reproduction of my experience should be somehow beneficial to other people. Logically, if I want to be an efficient educator in social sciences, what I should do now, is to distillate some sort of essence from my past experience, and formalize it in a teachable form.

My experience is that of looking for recurrent patterns in the most basic phenomena around me. As I am supposed to be clever as a social scientist, let’s settle for social phenomena. Those three distinct forms of my expression correspond to three distinct experiences: focus on one case, search for quantitative data on a s**tload of cases grouped together, and, finally, progressive coining up of complex ideas. This is what I can communicate, as a teacher.

Yet, another idea germinates in my mind. I am a being in time, and I thrust myself into the time to come, as Martin Heidegger would say (if he was alive). I define my social role very largely as that of a scientist and a teacher, and I wonder what am I thrusting, of myself as a scientist and a teacher, into this time that is about to advance towards me. I was tempted to answer grandly that it is my passion to discover that I project into current existence. Yet, precisely, I noticed it is grand talk, and I want to go to the core of things, like to the flesh of my being in time.

As I take off the pompous, out of that ‘passion to discover’ thing, something scientific emerges: a sequence. It all always starts when I see something interesting, and sort of vaguely useful. I intuitively want to know more about that interesting and possibly useful thing, and so I touch, I explore, I turn it under different angles, and yes, my initial intuition was right: it is interesting and useful. Years ago, even before having my PhD, I was strongly involved in preparing new material for management training. I was part of a team lead by a respectable professor from the University of Warsaw, and we were in scientific charge of training for the middle management of a few Polish banks. At the time, I started to read financial reports of companies listed in the stock market. I progressively figured out that large, publicly listed companies published periodical reports, which are like made of two completely different, semantic substances.

In those financial reports, there was the corporate small talk, about ‘exciting new opportunities’, ‘controlled growth’, ‘value for our shareholders’, which, honestly, I find interesting for the sake of its peculiar style, seemingly detached from real life. Yet, there is another semantic substance in those reports: the numbers. Numbers tell a different story. Even if the management of a company do their best to disguise some facts so as they look fancier, the numbers tell the truth. They tell the truth about product markets, about doubtful mergers and acquisitions, about the capacity of a business to accumulate capital etc.

As I started to work seriously on my PhD, and I started to sort out the broadly spoken microeconomic theories, including those of the new institutional school, I suddenly realised the connection between those theories and the sense that numbers make in those financial reports. I discovered that financial statements, i.e. the bare numbers, backed with some technical, explanatory notes, tend to show the true face of any business. They make of those Ockham’s razors, which cut out the b*****it and leave only the really meaningful.

Here comes the underlying, scientifically defined phenomenon. Financial markets have been ever present in human societies. In this respect, I could never recommend enough the monumental work by Fernand Braudel (Braudel 1992a[1]; Braudel 1992b[2]; Braudel 1995[3]). Financial markets have their little ways, and one of them is the charming veil of indefiniteness, put on the facts that laymen should-not-exactly-excite-themselves-about-for-their-own-good. Big business likes to dress into those fancy clothes, made of fancy and foggy language. Still, as soon as numbers have to be published, they start telling the true story. However elusive the management of a company would be in their verbal statements, the financials tell the truth. It is fascinating, how the introduction of precise measurements and accounts, into a realm of social life where plenty of b*****it floats, instantaneously makes things straight and clear.

I know what you can think now, ‘cause I used to think the same when I was (much) younger and listened to lectures at the university: here is that guy, who can be elegantly labelled as more than mature, and he gets excited about his own fascinations, financial reports in the occurrence. Still, I invite you to explore the thing. Financial markets are crucial for the current functioning of our civilisation. We need to shift towards renewable energies, we need to figure out how to make more food in sustainable ways, we need to remove plastic from the oceans, we need to go and see if Mars is an interesting place to hang around: we have a lot of challenges to face. Financial markets are crucial to that end, because they can greatly help in mobilising collective effort, and if we want them to work the way they should work, we need to assure that money goes where it is really needed. Bringing clarity and transparency to finance, over and over again, is really important. Being able to cut through the veil of corporate propaganda and go to the core of business is just as important. Careful reading of financial reports matters. It just matters.

So here is how one of my scientific fascinations formed. More or less at the same epoch, i.e. when I was working on my PhD, I started to work seriously with large datasets, mostly regarding innovation. Patents, patent applications, indicators of R&D effort: I started to go really quantitative about that stuff. I still remember that strange feeling, when synthetic measures of those large datasets started to make sense. I would run some correlations, just because you just need a lot of correlations in a PhD in economics, and vlam!: things would start to be meaningful. Those of you who work with Big Data probably know that feeling well, but I was experiencing it in the 1990ies, when digital technologies were like the grand-parents of the current ones, and even things like Panel Data Analysis, an analytical routine today, were seen as the impressionism of economic research.

I had progressively developed a strongly exploratory manner of working with quantitative data. A friend of mine, the same professor whom I used to work for in those management training projects, called it ‘the bulldog’ approach. He said: ‘Krzysztof, when you find some interesting data, you are like one of those anecdotal bulldogs: you bite into it so strongly, that sometimes you don’t even know how to let go, and you need someone who comes with a crowbar at forces your jaws open’.  Yes, indeed, this is the very same that I have just noticed as I am reviewing the past updates in that research blog of mine. What I do with data can be best described as sniffing, rummaging, playing with, digging and biting into – anything but serious scientific approach.

This is how two of my typical forms of scientific expression – case studies and quantitative studies – formed out of my fascination with the sense coming out of numbers. There is that third form of expression, which I have provisionally labelled ‘concept forming’, and which I developed the most recently, like over the last 18 months, precisely as I started to blog.

I am thinking about the best way to describe my experience in that respect. Here it comes. You have probably experienced those episodes of going outdoors, hiking or running, and then you or someone else starts moaning: ‘These backpack straps are just killing my shoulders! I am thirsty! I am exhausted! My knees are about to explode!’ etc. When I was a kid, I joined the boy scouts, and it was all about hiking. I used to be a fat kid, and that hiking was really killing me, but I liked company, too, and so I went for it. I used to moan exactly the way I have just portrayed. The team leader would just reply in the lines of ‘Just shut up and keep walking! You will adapt!’. Now, I know he was bloody right. There are times in life, when we take on something new and challenging, and then it seems just so hard to carry on, and the best way to deal with it is to shut up and carry on. You will adapt.

This is very much what I experienced as regards thinking and writing. When I started to keep this blog, I had a lot of ideas to express (hopefully, I still have), but I was really struggling with giving an intelligible form to those ideas. This is how I discovered the deep truth of that sentence, attributed to Pablo Picasso (although it could be anyone): ‘When a stroke of genius comes, it finds me at work’. As strange as it could seem, I experienced, and I am still experiencing, over and over again, the fundamental veracity of that principle. When I start working on an idea, the initial enthusiasm sooner or later yields to some moaning function in my brain: ‘F*ck, it is to hard! That thinking about one thing is killing me! And it is sooo complex! I will never sort it out! There is no point!’. Then, hopefully, another part of my brain barks: ‘Just shut up, and think, write, repeat! You will adapt’.

And you know what? It works. When, in the presence of a complex concept to figure out I just shut up (metaphorically, I mean I stop moaning), and keep thinking and writing, it takes shape. Step by step, I am sketching the contours of what’s simmering in the depths of my mind. The process is a bit painful, but rewarding.

Thus, here is the pattern of myself, which I am thrusting into the future, as it comes to science and teaching, and which, hopefully, I can teach. People around me, voluntarily or involuntarily, attract my attention to some sort of scientific and/or teaching work I should do. This is important, and I have just realized it: I take on goals and targets that other people somehow suggest. I need that social prod to wake me up. As I take on that work, I almost instinctively start flipping my Ockham’s razor between and around my intellectual fingers (some people do it with cards, phones, or even knives, you might have spotted it), and I causally give a shave here and there, and I slice observable reality into layers: there is the foam of common narrative about the thing, and there are those factual anchors I can attach to. Usually they are numbers, and, at a deeper philosophical level, they are proportions between things of reality.

As I observe those proportions, I progressively attach them to facts of life, and I start seeing patterns. Those patterns provide me something more or less interesting to say, and so I maintain my intellectual interaction with other people, and sooner or later they attract my attention to another interesting thing to focus on. And so it goes on. And one day, I die. And what will really matter will be made of things that I do but which outlive me. The ethically valuable things.

Good. I return to that metaphor I coined up a like 10 weeks ago, that of social sciences used as a social GPS system, i.e. serving to find one’s location in the social space, and then figure out a sensible route to follow. My personal experience, the one I have just given the account of, can serve to that purpose. My experience tells me that finding my place in the social space always involves interaction with other people. Understanding, and sort of embracing my social role, i.e. the way I can be really useful to other people, is the equivalent of finding my location on the social map. Another important thing I discovered as I deconstructed my experience: my social role is largely made of goals I pursue, not just of labels and rituals. It is sort of dynamic, it is very much my Heideggerian being-in-time, thrusting myself into my own immediate future.

I feel like getting it across really precisely: that thrusting-myself-into-the-future thing is not just pure phenomenology. It is hard science as well. We are defined by what we do. By ‘we’ I mean both individuals and whole societies. What we do involves something we are trying to achieve, i.e. some ethical values we seek to maximise, and to balance with other values. Understanding my social role means tracing the path I am moving along.

Now, whatever goal I am to achieve, according to my social role, around me I can see the foam of common narrative, and the factual anchors. The practical use of social sciences consists in finding those anchors, and figuring out the way to use them so as to thrive in the social role we have now, or change that role efficiently. Here comes the outcome from another piece of my personal experience: forming a valuable understanding requires just shutting up and thinking, and discovering things. Valuable discovery goes beyond and involves more than just amazement: it is intimately connected to purposeful work on discovering things.

I am consistently delivering good, almost new science to my readers, and love doing it, and I am working on crowdfunding this activity of mine. As we talk business plans, I remind you that you can download, from the library of my blog, the business plan I prepared for my semi-scientific project Befund  (and you can access the French version as well). You can also get a free e-copy of my book ‘Capitalism and Political Power’ You can support my research by donating directly, any amount you consider appropriate, to my PayPal account. You can also consider going to my Patreon page and become my patron. If you decide so, I will be grateful for suggesting me two things that Patreon suggests me to suggest you. Firstly, what kind of reward would you expect in exchange of supporting me? Secondly, what kind of phases would you like to see in the development of my research, and of the corresponding educational tools?

Support this blog

€10,00

[1] Braudel, F. (1992). Civilization and capitalism, 15th-18th Century, Vol. I: The structure of everyday life (Vol. 1). Univ of California Press.

[2] Braudel, F. (1992). Civilization and capitalism, 15th-18th century, vol. II: The wheels of commerce (Vol. 2). Univ of California Press.

[3] Braudel, F. (1995). A history of civilizations (p. 178). New York: Penguin Books

L’aventure innocemment analytique

 

J’ai remarqué que j’utilise mon blog pour couvrir un éventail de plus en plus large des sujets. Il y a un an, je sur ce blog, je rédigeais surtout une forme de journal de ma recherche « officielle », plus quelques randonnées intellectuelles un peu échevelées lorsque je voulais me décontracter la cervelle. Maintenant, je suis en train de transformer mon écriture en une sorte de journal intellectuel généralisé : je couvre tous mes sujets de réflexion, plus ou moins en parallèle. C’est l’une des raisons qui m’ont incité à inclure des mises à jour en polonais, ma langue natale. Je suis en train d’explorer un phénomène dont j’eus pris conscience déjà l’année dernière : écrire et publier ça m’aide à penser, ou plutôt à structurer mes pensées de façon intelligible.

Chez moi, à la fac, le mois de Septembre c’est la saison des syllabus. Je me concentre donc sur ce sujet précis. Je réassume, une fois de plus, tout ce que j’ai écrit durant les trois derniers mois à ce sujet. Je commence par les compétences de base que je voudrais enseigner. Comme vous avez pu le lire dans quelques-unes de mes mises à jour précédentes, j’ai une idée qui m’obsède, celle d’enseigner les sciences sociales comme si j’enseignais la navigation, donc comme une méthode de trouver sa propre localisation dans l’espace social ainsi que de tracer une route à travers ledit espace. Deux compétences viennent à mon esprit plus ou moins spontanément : la modélisation des comportements, d’une part, et l’analyse quantitative – surtout financière – d’autre part.

Tout ce qui se passe dans une société est fait de comportement humain. Tout comportement humain survient comme une séquence plus ou moins récurrente d’actions, préalablement apprise. Les séquences de comportement sont pour une société ce que les éléments de construction – briques, panneaux, poteaux etc. – sont pour une structure architectonique. L’apprentissage qui conduit à la formation de ces séquences de comportement est comme la production de ces éléments.

J’encourage mes étudiants à observer les structures sociales, avec la méthode scientifique à l’appui, et à tirer des conclusions tout aussi scientifiques de cette observation. Il serait donc avisé d’expliquer ce qu’est une structure sociale. Si je parle d’être de quoi que ce soit, je parle de quelque chose qui soit n’existe pas du tout soit nous n’en avons qu’un aperçu très succinct. C’est le problème avec l’approche ontologique : aussitôt que je demande ce qu’est une chose, un raisonnement vraiment rigoureux impose une autre question, celle qu’est-ce que ça peut bien signifier « être ». C’est une intuition profonde que nous pouvons trouver, par exemple, chez Martin Heidegger. Pour expliquer la nature des structures sociales, je vais donc prendre un tournant similaire à ce que fait la physique en ce qui concerne la nature de la matière : je vais me concentrer sur ce comment nous vivons la présence des structures sociales, ou bien leur absence. Je vais donc aller vers leur phénoménologie.

Nous expérimentons plusieurs situations sociales. Certaines d’entre eux nous percevons comme passagères, pendant que d’autres semblent avoir une sorte de permanence et de solidité en elles. Un premier ministre, ça ne dure pas (nécessairement) très long. En revanche, la procédure constitutionnelle de nommer un premier ministre, ainsi que de lui donner un vote de confiance, c’est beaucoup plus stable et répétitif. Les pâtés vendus par le traiteur du coin peuvent avoir un goût variable, de jour en jour, mais la présence dudit traiteur dans le quartier, ainsi que la profession des traiteurs en général, c’est du beaucoup plus solide et prévisible.

Nous pouvons donc mettre un ordre hiérarchique parmi toutes les situations sociales que nous vivons, en commençant par celles qui sont les plus récurrentes et les plus prévisibles, en passant par celles qui sont un peu fofolles dans leur occurrence et néanmoins on peut leur faire confiance de survenir, pour finir avec les situations sociales que nous percevons –souvent à cause de nos propres limitations cognitives – comme vraiment uniques et rares. La structure sociale autour de nous est faite de ces pièces de comportement humain qui – selon notre perception – surviennent le plus souvent et de façon la plus prévisible.

Si vous voyez donc, dans un manuel de sociologie, par exemple, la représentation d’une structure sociale en forme d’organigramme, avec des polygones ou des bulles, connectées par des traits fléchés, alors souvenez-vous : ça n’existe pas, c’est juste la carte d’un territoire qui en lui-même est observable comme un ensemble des comportements humains hautement répétitifs. Voilà donc tout le sens d’enseigner – et d’apprendre – les techniques d’identification des schémas de comportement. Ces techniques nous aident à comprendre comment fonctionne la structure sociale autour de nous.

L’analyse quantitative, quant à elle, comme je l’enseigne, a surtout et avant tout la mission de réveiller l’instinct mathématique de mes étudiants. Il y a beaucoup de parallèle avec les techniques d’identification des schémas de comportement. Les nombres ont une signification – c’est une vérité profonde que les anciens Grecs et les anciens Chinois eussent découvert il y a des millénaires. Je suis beaucoup plus proche de la philosophie Grecque en la matière que de l’approche Chinoise. Cette dernière à tendance – au moins pour autant que je la connaisse – à verser dans le mystique et la numérologie. C’est plutôt une sorte de magie mathématique, où les ensembles des nombres correspondent à des destinées et des entités métaphysiques.

En revanche, les Grecs, ils étaient beaucoup plus terre-à-terre dans leur appréhension des maths. Ces derniers étaient un outil. Les théorèmes les plus puissants que nous avons hérité des Grecs – comme celui de Pythagore, ceux de Thalès ou d’Euclide – avaient une application pratique dans le bâtiment, la navigation ou le militaire et ils étaient basées sur l’observation empirique des proportions. C’est par ailleurs de là que vient la notion de nombre rationnel, donc d’un nombre qui est égal à un quotient de deux nombres entiers relatifs. Alors, lorsque j’enseigne les concepts fondamentaux de l’analyse quantitative, je commence par cette recommandation pratique de base : observez les proportions rationnelles et récurrentes dans les phénomènes que vous étudiez.

L’analyse quantitative trouve son application dans l’étude directe des comportements humains aussi bien que dans l’analyse financière. C’est donc ainsi que je viens à une question vraiment importante : comment expliquer la logique de base des finances d’entreprise, aux gens qui n’y avaient jamais ou presque jamais affaire ?

Je commence cette explication par attirer l’attention de mes étudiants sur un fait quotidien : nous attachons de l’importance à tout ce qui est habituellement mesuré en argent. Le montant de notre revenu mensuel ou annuel, le loyer à payer, le prix des transports publics, la valeur de notre immobilier ainsi que celle de l’hypothèque qui y pèse – tout ça c’est important. Bien sûr, l’argent n’est pas la seule chose importante dans la vie, néanmoins elle est importante.

Voici un fait empirique que beaucoup d’étudiants peuvent remarquer par eux-mêmes, par ailleurs : la plupart de pognon qui nous intéresse c’est de l’argent immatériel, en principe ce sont juste des nombres (ou bien des « soldes » comme on les appelle dans la finance) que nous associons, plus ou moins intuitivement, à des trucs importants dans la vie.

Je passe aux finances d’une entreprise et à les expliquer de façon la plus simple possible. Lorsqu’on veut faire du business, il nous faut des ressources, matérielles aussi bien qu’immatérielles. Le compte synthétique qui montre l’état des ressources d’une entreprise est appelé « bilan ». Le bilan possède un trait unique, par rapport aux autres comptes synthétiques : il a deux faces, comme un dieu antique. Il y a la face active et la face passive. Avant d’expliquer leurs technicités, le truc de base à comprendre est la philosophie de division en deux faces distinctes. La voilà : toute ressource qui a de la valeur socialement reconnue possède cette valeur parce que et aussi longtemps qu’elle est à la fois limitée et accessible. Toute ressource que nous possédons dans notre entreprise, nous l’avons acquise – donc transférée de quelque part ailleurs dans la structure sociale – et cette ressource a donc deux aspects : son application courante et sa provenance.

Quant à la provenance des ressources, l’expérience accumulée des générations d’hommes d’affaires, petits et grands, avait conduit à distinguer deux situations différentes : l’emprunt et l’investissement. La logique de cette distinction est basée sur l’observation de comportement humain. Nous nous engageons dans des projets d’entreprise avec deux niveaux de prudence : soit on y plonge tête la première, en échange de la capacité de gérer le projet comme il se développe – c’est la logique générale de l’investissement – soit on se fait des pare-chocs divers qui nous assurent la possibilité de nous retirer, mais cette assurance a une contrepartie en la forme d’influence beaucoup moins marquée sur la gestion du projet – c’est l’approche de celui qui prête plutôt qu’investit.

Suivant cette dichotomie de l’action, le côté passif du capital accumulé dans une entreprise distingue les capitaux propres d’une part et les emprunts (capitaux extérieurs) d’autre part. Pourquoi cette distinction-ci et non pas une division selon les personnes qui fournissent le capital ou bien selon la chronologie de flux de trésorerie correspondants ? Avant de répondre à cette objection directement, laissez-moi attirer votre attention sur un fait très simple et courant : nos façons de communiquer les quantités d’argent dont nous disposons sont hautement standardisées et nous les aimons voir comme telles. Lorsque vous utilisez un logiciel mobile pour des paiements courants, PayPal ou autre, n’êtes-vous pas légèrement irrités lorsque la composition visuelle change radicalement et vous ne pouvez plus retrouver les chiffres-clés là où vous aviez l’habitude de les voir ?

C’est la même chose avec les comptes financiers des entreprises. Quelqu’un commence à rapporter sa situation financière selon un schéma donné. Si une autre personne – un banquier, par exemple – veut être capable de comparer ces comptes avec ceux d’un autre entrepreneur, il veut voir ces derniers présentés selon le même schéma. C’est plus confortable. Vous souvenez-vous de la définition de la structure sociale que je viens de donner quelques paragraphes en arrière ? Voilà un exemple rêvé : la structure logique des comptes, ça se reproduit de façon récurrente et crée ce que nous appelons un système socialement reconnu de comptabilité.

Je viens donc d’introduire en douce une assomption : à un moment donné de l’histoire quelqu’un quelque part avait commencé à présenter le capital de son business divisé en capitaux propres et capitaux extérieurs et les gens auxquels cette personne avait présenté ses comptes selon cette logique avaient trouvé l’idée bien judicieuse et l’avaient reproduite, jusqu’à ce qu’elle soit devenue coutume. Qu’est-qui est donc de si judicieux dans cette distinction ? Eh bien, on peut voir les capitaux propres d’une entité – personne physique ou légale – comme la différence résiduelle entre la valeur brute de tout le capital accumulé et les dettes qui pèsent sur ladite valeur brute. En d’autres mots, la division en capitaux propres et capitaux extérieurs permet de se faire une idée rapide de la liquidité financière de celui qui présente ses comptes.

Alors, un entrepreneur accumule ses ressources à travers deux types de transactions. Certaines personnes, lui-même inclus, investissent leur capital dans ce business et créent ainsi le capital propre. D’autres, plus prudents et moins enthousiastes, signent avec l’entrepreneur des contrats de prêt. Une fois accumulé, le capital est utilisé et c’est alors sur le côté actif du bilan que nous pouvons observer les modalités de cette utilisation.

Le côté actif du bilan est composé d’actifs, c’est à dire des choses et des droits que l’entité donnée possède au moment donné. Pour expliquer le concept essentiel d’un actif, je me réfère à Airbus et à leur rapport financier annuel pour l’année fiscale 2017. Si vous ouvrez ce document (publié en anglais), allez donc à leur bilan, qu’ils désignent comme « Consolidated Statements of Financial Position » en anglais et regardez la catégorie « Assets », donc actifs.

Encore une fois, faisons donc usage de la capacité la plus élémentaire d’observation, avec un minimum d’assomptions. Ce que nous voyons sur le côté actif du bilan d’Airbus est un ensemble de catégories, comme « Propriété, usine et équipement » (ANG : Property, plant and equipment), « Actifs intangibles » (ANG : Intangible assets) et ainsi de suite. En face de chaque nom de catégorie, nous voyons un solde financier, en millions d’euros. Maintenant, question (apparemment) bête : est-ce qu’un euro donné, sur un compte bancaire appartenant à Airbus, est comme signé ? Est-ce que vous pouvez trouver des euros signés « j’appartiens à la catégorie d’actifs intangibles » ? Pour autant que je sache, non. Les soldes en euros que vous voyez en face de ces catégories sont comme des niveaux de liquide dans un ensemble des vases distincts, dont on aurait pris une photo au même moment dans le temps, le 31 Décembre dans le cas des bilans.

Les euros, ça flotte et ça coule dans le business et néanmoins, comme vous pouvez le constater, ça a tendance à se coaguler selon une certaine structure. Vous vous souvenez de la définition de structure sociale que j’avais donnée auparavant ? Si nous appelons quelque chose « structure », ça veut dire que les phénomènes se passent selon un schéma suffisamment répétitif pour qu’il nous donne une impression de permanence. Les euros du bilan d’Airbus, ils flottent et ils coulent selon un schéma qui, photographié le 31 Décembre chaque année, donne une structure répétitive.

Les euros, ils flottent et ils coulent là où les gens engagés dans ce business font quelque chose de valeur économique. Les proportions entre les soldes écrits dans le bilan d’actifs d’Airbus reflètent la concentration relative d’activité économique dans certains types (catégories) d’action plutôt que dans d’autres. Si la catégorie « Inventaires courants » (31,5 milliards d’euros), parmi les actifs d’Airbus, est presque deux fois plus grande financièrement que la catégorie « Propriété, usine et équipement non-courants » (16,6 milliards d’euros), cela veut dire que les activités relatives à l’accumulation d’inventaires courants reflètent à peu près deux fois plus de valeur économique que celles relatives à l’accumulation des gros trucs fixés à la terre. C’est la logique de la mathématique Grecque : observer les proportions.

J’explique brièvement ce qui est vraiment intéressant dans cette proportion particulière. Dans le capital d’une entreprise, tout ce qui est désigné comme « courant » épuise sa capacité de générer de la valeur économique en une année maximum. Tout actif classé comme « courant » est quelque chose qui travaille à courte haleine et n’a pas de cycle de vie prolongé. En revanche, les actifs « non-courants » ont par définition, une vie économique de plus d’un an. Dans une boutique de vêtements d’occasion, des inventaires deux fois plus gros que la propriété immobilière et son équipement, ça ne serait pas étonnant. Néanmoins, chez Airbus, donc dans une entreprise qui semble être ancrée dans une technologie imposante installée dans des usines tout aussi imposantes, ça étonne. Nous avons une entreprise qui est durable par excellence, ne serait-ce que pour assurer le support technique pour leurs avions, et en même temps le capital ce cette entreprise semble être investi dans quelque chose de plutôt éphémère, qui s’épuise en moins d’un an.

J’utilise l’occasion offerte par le rapport financier d’Airbus et je montre la façon d’utiliser ce qu’on appelle « notes explicatives ». Dans beaucoup – en fait dans la plupart – des rapports financiers nous pouvons trouver des notes explicatives qui affèrent spécifiquement à une catégorie donnée. Dans le rapport financier d’Airbus pour l’année 2017, la catégorie « Inventaires courants » est expliquée dans la note no. 20, pendant que le sous-ensemble d’actifs baptisé « Propriété, usine et équipement non-courants » trouve une explication approfondie dans la note no. 18.

J’y fonce et je trouve l’explication de cette proportion financière étrange. La note no. 20 explique qu’à l’intérieur de la catégorie « Inventaires courants », la plus grande sous-catégorie, dans les 75%, consiste de ce qui est appelé « Travaux en cours ». C’est comme dans la « Guerre des étoiles » : le plus gros actif dans les parages était cette diabolique Etoile de la Mort. Une bonne partie de ce multi-film est faite des vues panoramiques des travaux en cours. Même chose chez Airbus. Je veux dire : je ne pense pas qu’ils soient en train de construire une station spatiale à fins militaires, seulement que le gros de leur capital est investi dans ces avions et hélicoptères en voie de construction. Ces machines semi-finies valent plus que les usines qui les produisent.

Voilà que l’aventure innocemment analytique avec le bilan d’Airbus nous conduit à découvrir l’une des composantes-clés du modèle d’entreprise aéronautique : la technologie est plus dans le produit lui-même que dans l’usine qui le manufacture. C’est un cas rare. La plupart des industries de haute technologie montre des proportions inverses : les usines présentent plus de valeur économique que le stock des produits semi-finis. Seulement dans l’aéronautique, le produit semi-fini, je veux dire un avion, il représente souvent la valeur économique d’une petite ville.

Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ?

Vous pouvez donner votre support financier à ce blog

€10,00

Czasami coś odrasta

 

Zastanawiam się – dalej się zastanawiam – nad tym, jak wydobyć maksymalną wartość dodaną z nauczania, jakie serwuję moim studentom. W języku polskim nauczam przede wszystkim podstaw zarządzania, mikroekonomii oraz budowania biznes planu, także w kontekście wdrażania nowych technologii. Mam taką małą obsesję na temat nauczania nauk społecznych: postrzegam je trochę w taki sposób, w jaki stulecia temu postrzegano astronomię, czyli jako dyscyplinę nauki służącą do określenia swojej pozycji na jakimś terytorium i do nakreślenia mapy tego terytorium. To trochę jak te programy w stylu „Szkoła przetrwania”: zrzucają Cię, czasami nawet na spadochronie (czasami bez) w środku czegoś, co tylko przez grzeczność określasz jako „dziką przyrodę” raczej niż „zadupie” i masz znaleźć drogę do wyznaczonego punktu ponownego kontaktu z tym, co zwykłeś uważać za cywilizację.

Nawiązuję w ten sposób do mojego poprzedniego wpisu, pod tytułem „Gra w tożsamość”. Szukam takich twierdzeń i teorii w naukach społecznych, które są solidnie potwierdzone badaniami empirycznymi – a więc zasługują na miano prawd naukowych – a jednocześnie są przydatne w codziennym życiu. W „Grze w tożsamość” rozwinąłem krótkie rozumowanie na temat jednej z takich podstawowych prawd naukowych: faktu, że jesteśmy istotami społecznymi. Teraz chcę się skupić na czymś innym i jednocześnie pokrewnym: prawie wszystko co robimy, robimy w sposób powtarzalny, według powtarzalnych wzorców, a każdy taki wzorzec można rozpisać jako sekwencję.

Na początek trochę praktycznych przykładów, tak tylko żeby szybko nakreślić o co mi chodzi. Powiedzmy, że zaczynamy nowy biznes, np. internetowy sklep z odzieżą. Staramy się sprofilować potencjalnych klientów. Kiedy po raz pierwszy zadajemy sobie pytanie: „Jak może podejmować decyzję nasz klient?”, odruchowa odpowiedź brzmi często „Nie mam pojęcia, oni są tacy różnorodni”. Otóż nie. Jedna z solidnych, teoretycznych zdobyczy nauk społecznych to stanowcze stwierdzenie, że nasi klienci będą się zachowywać według przewidywalnych wzorców. Marketing opiera się na identyfikacji tych wzorców.

Powiedzmy, że jesteśmy kimś ważnym w państwie ( np. doradcą asystenta wiceprzewodniczącego komitetu politycznego przy kimś, kto na skutek niezręcznego zbiegu okoliczności tylko firmuje nas swoim nazwiskiem ) i uczestniczymy – naprawdę uczestniczymy – w negocjacjach na temat jakiegoś ważnego traktatu międzynarodowego. Sytuacja bywa napięta i mamy skłonność do traktowania innych stron negocjacji jako nieodgadnionych pokerzystów, którzy mogą w każdej chwili nas czymś zaskoczyć. Otóż znowu: nie. Państwa, tak samo jak ludzie, działają według powtarzalnych wzorców. Rzeczywisty margines manewru Waszych partnerów negocjacyjnych naprawdę nie jest znacząco odmienny od Waszego.

Pora na poważniejszą teorię. Zacznę od matematyki, a dokładnie od rachunku prawdopodobieństwa. Wiem, jak zaczynam od matmy, to wielu z Was może spontanicznie zamknąć tą stronę. Wiem, wielu z Was czuje instynktowną niemal odrazę do matematyki. Ja też ją kiedyś czułem. Wobec chyba wszystkich z nas, kiedy byliśmy dziećmi, zastosowano zabieg intelektualnego okaleczenia polegający na rozpoczęciu nauki matematyki od wkuwania na pamięć tabliczki mnożenia.

Mogę Was pocieszyć: czasami, nawet po okaleczeniu, coś odrasta. Mnie odrosła ciekawość matematyczna, tzn. intuicyjne przeświadczenie, że matematyka odzwierciedla strukturę rzeczywistości. Wam też może odrosnąć. Odwagi. Jedną z rzeczy, które wkuwamy na matmie w szkole jest pojęcie średniej arytmetycznej. Dlaczego?

Siedemnasty i osiemnasty wiek w Europie były okresem fascynacji matematyką i z czasem ta fascynacja przerodziła się w praktyczne zastosowanie. Pytanie „Co może się wydarzyć ?” było jednym z podstawowych, na które matematyka próbowała znaleźć odpowiedź. Na przełomie XVII i XVIII wieku, Isaac Newton oraz Gottfried Wilhelm Leibniz wytyczyli pierwszą ścieżkę odpowiedzi na to pytanie, kładąc podwaliny pod dziedzinę matematyki, którą znamy dzisiaj jako analizę matematyczną. Ich głównym odkryciem było stwierdzenie, że kiedy rzeczy się zmieniają, to zmieniają się w kierunku określonym przez zależności z innymi rzeczami, czyli według określonej funkcji.

Jednym z badaczy, którzy podjęli ten temat był o jedno pokolenie starszy od Newtona Abraham de Moivre. W swoim dziele pt. „The Doctrine of Chances”, w 1738 roku (następnie w 1756) wyłożył następującą teorię, potwierdzoną zresztą żmudnymi badaniami empirycznymi: jeżeli mamy jakieś zjawisko, które można zmierzyć, to przy dużej liczbie możliwych zdarzeń tego zjawiska najczęściej będzie się powtarzać wartość równa średniej arytmetycznej, czyli sumie wszystkich zaobserwowanych wartości podzielonej przez liczbę obserwacji.

Zastanówmy się nad tym chwilę. Jeżeli mam ten sklep internetowy z odzieżą i zastanawiam się, jaki typowy budżet moi klienci wydadzą na zakupy, to zgodnie z teorią de Moivre’a mam prawo oczekiwać, że będzie to średnia arytmetyczna, czyli suma wszystkich indywidualnych budżetów podzielona przez liczbę klientów. Mniej więcej w tym kierunku poszły badania i odkrycia Adama Smitha, jednego z ojców założycieli ekonomii. Odkrył, że ceny wielu dóbr, zwłaszcza tych o podstawowym znaczeniu dla społeczeństwa (np. ceny zboża albo cena pieniądza czyli stopa procentowa), zmieniają się według możliwych do przewidzenia trajektorii oraz że w danym miejscu i czasie przyjmują najczęściej wartości bliskie średniej arytmetycznej.

Teoria de Moivre’a dała początek założeniu, które z kolei wkuwamy na zajęciach ze statystyki, ze tzw. wartością oczekiwaną w zbiorze obserwacji jest średnia arytmetyczna. Z jednej strony zachęciło to późniejszych badaczy, po de Moivrze, do eksploracji okolic tej średniej arytmetycznej i do opisu całej struktury rzeczywistości dookoła. W tym kierunku poszedł Carl Friedrich Gauss, którego odkrycia pozwalają nam dzisiaj stosować tzw. rozkład normalny, zwany pieszczotliwie krzywą Gaussa.

Z drugiej jednak strony pojawiły się pytania o to, co robić, kiedy nie mamy warunków do wykonania np. 2000 prób i do określenia średniej arytmetycznej. Trudno może być znaleźć chociażby samą tylko metodę dla wyliczenia średniej np. z czasu, jakiego potrzebuje do namysłu gracz po drugiej stronie pokerowego stołu. Czasami w życiu bywa tak, że mamy niewiele prób. Warto mieć jednak metodę oswojenia niepewności i na taką okoliczność. Jednym z pierwszych teoretyków, którzy poszli tą ścieżką był wielebny Thomas Bayes, którego tajemniczy skądinąd esej, opublikowany post mortem oraz intepretowany czasami jako poszukiwanie dowodu na istnienie Boga, stworzył fundamenty dla tego, co dzisiaj określamy jako statystykę Bayesowską. W ślady Bayesa poszli inni i w ten sposób (prawdopodobnie) narodziła się teoria gier.

Gauss i Bayes to dwie różne metody określenia powtarzalnych wzorców w zachowaniu ludzi. Zgodnie z moim podejściem do dydaktyki nauk społecznych są to dwie różne metody znajdowania własnej drogi w złożonej rzeczywistości społecznej. Idąc w ślady Gaussa, staramy się odtworzyć strukturę rzeczywistości ujętą w liczbach. Podążając z kolei śladami Thomasa Bayesa, racjonalnie eksperymentujemy i stopniowo redukujemy niepewność poprzez interpretację wyników kolejnych eksperymentów.

Przyjrzyjmy się bliżej tym dwóm ścieżkom rozumowania oraz ich praktycznemu zastosowaniu. Mówiąc najprościej, każda z nich pasuje do innego typu sytuacji. Rozumowanie de Moivre’a i Gaussa pasuje do okoliczności, kiedy w zasięgu ręki mamy dużo informacji, czasami tak dużo iż mamy wrażenie nadmiaru. Powtarzalne wzorce w zachowaniu ludzi odtwarzamy, znajdując porządek ukryty w natłoku informacji. Bywa jednak i tak, że informacja jest skąpa, a przynajmniej takie mamy wrażenie. Potrzebujemy wtedy metody, która działałaby w pewnym sensie odwrotnie do „ilościówki” de Moivre’a. Potrzebujemy czegoś, co wyciśnie informacje i pozwoli nam wyrobić sobie zdanie na temat powtarzalnych zachowań ludzi tam, gdzie pozornie takich informacji nie ma.

Zanim przejdę do uczonego wykładu, mała dygresja. Po jaką ciężką cholerę zajmować się tym, co napisał jakiś gość dwieście z górą lat temu ? Co, nie mamy świeższej bibliografii ? Jasne, że mamy. Zachęcam, aby się z nią zapoznawać na bieżąco. Mam jednakowoż takie osobiste przekonanie, zbieżne z filozofią hermeneutyczną: jakiejkolwiek historii bym nie opowiadał, koniec końców opowiadam historię mojej własnej egzystencji. Opowiadam kontekst, w takim moja historia powstała. Teoretycy z osiemnastego wieku opowiadali historię społeczeństwa, które mniej więcej od połowy siedemnastego wieku stopniowo odkrywało zastosowania matematyki. To były czasy, kiedy akuratne obliczenia miały strategiczne znaczenie: w kartografii, w ekonomii (która jeszcze wtedy nie miała pojęcia, że nazywa się „ekonomia”), w architekturze, w wojskowości itd. Europa odkrywała wtedy całą potęgę informacji ujętych w liczby. Brzmi znajomo ? Ludzie tamtych czasów starali się znaleźć powtarzalne wzorce w sytuacjach, kiedy nagle mieli do dyspozycji nowe narzędzia ich zbierania, tak jak my dzisiaj. Książka de Moivre’a czy też esej Bayesa, pod powierzchnią rozważań teoretycznych, opowiadają taką właśnie historię. No i przy okazji można zrozumieć nieco lepiej, o czym ględzę ja albo inny wykładowca kiedy staramy się przekazać, na przykład, na czym polega rozkład normalny.

Na i jeszcze jedna dygresja: w zasadzie każde równanie matematyczne wywodzące się z tych osiemnasto- i dziewiętnastowiecznych teorii miało swój początek w geometrii. Wszystko, co się może wydarzyć wyobrażamy sobie jako dwuwymiarową płaszczyznę. No wiem, Gauss poszedł dalej i zrobił to w trzech wymiarach, ale staram się nie spłoszyć czytelnika. Nie wiem, skąd dokładnie wywodziła się ówczesna fascynacja geometrią. Być może z faktu, że szybki rozwój astronomii umożliwił wtedy o wiele bardziej precyzyjny pomiar odległości i tworzenie o wiele dokładniejszych niż wcześniej map. To jednak tylko domysły, a ja chcę się skupić na podstawowej regule geometrycznej, która będzie nam tu towarzyszyć: jeżeli dzieją się dwa zjawiska, oddzielone od siebie czasem lub przestrzenią, to różnicę między tymi zjawiskami możemy wyrazić jako odległość, czy też jako drogę z punktu A do punktu B. Kiedy zastosować tą regułę do ludzkiego postępowania, zachowania bardzo odmienne dzielić będzie stosunkowo duża odległość, podczas gdy zachowania stosunkowo podobne są bliskie jedne drugiego.

To jednak nie wszystko. Jeszcze trochę tej geometrii. Znacie twierdzenie Pitagorasa ? No wiecie: w trójkącie prostokątnym kwadrat długości przeciwprostokątnej jest równy sumie kwadratów długości przeciwprostokątnych. No właśnie: każdy odcinek, czyli każdą odległość od zjawiska A do zjawiska B można wyobrazić sobie jako przeciwprostokątną (no, ten skośny bok) trójkąta prostokątnego. Ta odległość jest więc pierwiastkiem z sumy kwadratów dwóch współrzędnych: X (kategoria zdarzeń) oraz Y(natężenie zdarzeń). Poniżej przedstawiam to graficznie.

Odległość Euklidesowa_Pitagorejska

Teoria jest uogólnieniem doświadczenia. Odległość Euklidesowa jest tego doskonałym przykładem. Kiedy staramy się czaić bazę na temat zachowań ludzi dookoła nas, robimy tak: dzielimy te zachowania na ogólne kategorie, a następnie dokonujemy bardziej finezyjnej oceny natężenia, z jaką każda kategoria występuje. Pierwszy tydzień w pracy: wszyscy w tym biurze to młoty albo pijawki, chociaż jest paru fajnych (grupowanie według kategorii, współrzędna X). Drugi tydzień w pracy: jeden z kategorii „młoty” ma w sobie sporo młota, ale także jest trochę fajny, a jedna „fajna” ma jakby lekki odcień pijawki (ocena natężenia cech, czyli współrzędna Y).

No dobra, czyli biorę się za krzywą Gaussa i za ukryte pod nią założenia na temat rzeczywistości oraz ludzkich zachowań. Jesteśmy więc w świecie obfitej informacji, którą trzeba uporządkować. Mamy ten sklep internetowy z odzieżą, nasi klienci wypełniają ankiety na temat swojego stylu życia, obserwujemy ich decyzje w naszym sklepie, być może jeszcze zamawiamy badanie zachowań użytkowników Internetu przy pomocy silnika behawioralnego. Mamy sporo mierzalnych (liczbowych) danych na temat naszych klientów.

Kiedy zadajemy sobie pytanie „Jak mogą się zachowywać nasi klienci ?” i kiedy świta nam intuicyjna odpowiedź „Jak tylko chcą ?”, teoria de de Moivre’a i Gaussa mówi nam „Niezupełnie. Ludzkie zachowania, tak samo jak wiele innych zjawisk, mają skłonność do skupiania się. Najwięcej przypadków będzie skupionych wokół średniej, czyli wokół wartości oczekiwanej. To skupienie ma swoje reguły. Poniżej przedstawiam ogólny wzór na rozkład normalny oraz jego interpretację, która pozwala lepiej zrozumieć te reguły.

Rozkład normalny 1

Rozkład normalny 2

 

Teraz łączymy założenia odległości Euklidesowej z założeniami rozkładu normalnego. Cokolwiek ludzie robią, to co robią zaliczamy do jakiejś kategorii ‘x’. Każdy zbiór zachowań ma swoją średnią, czyli wartość oczekiwaną, czyli najbardziej prawdopodobną kategorię zachowań określaną jako ‘µ’. Każda kategoria zachowań ‘x’ występuje z prawdopodobieństwem – natężeniem ‘y’ – wyznaczanym przede wszystkim przez to, jak daleko jest od najbardziej prawdopodobnej kategorii ‘µ’. To, jak daleko kategoria zachowań ‘x’ znajduje się od najbardziej prawdopodobnej kategorii ‘µ’ jest mierzone w jednostkach odchylenia standardowego, czyli w sigmach. No i dalej to już z górki: dokładne prawdopodobieństwo występowania kategorii zachowań ‘x’ – czyli jej natężenie ‘y’ – jest określane wzorem omówionym powyżej. Najpierw wycinamy z całej rzeczywistości kawałek określany jako „stała Gaussa” czyli jeden dzielone przez pierwiastek z dwukrotności liczby pi, a potem ścinamy dalej według wzoru.

No i byłoby zupełnie fajnie, gdyby nie to, że nasze doświadczenie mówi nam często co innego: nie widzimy jasno określonych kategorii w zachowaniach ludzi dookoła nas. Nie widzimy jednego, dominującego typu zachowań. Co robić ? Jak działać ? Tu wracamy do filozofii matematycznej Thomasa Bayesa. Postaram się o niej szerzej opowiedzieć w kolejnych wpisach na moim blogu, a na razie zadowolę się ogólnym zarysem: w warunkach ogólnej niepewności co do zachowań innych ludzi zaczynamy eksperymentować i określamy w ten sposób, co jest dla nas korzystne, a co nie. Definiujemy, co jest dla nas sukcesem, a co porażką. Następnie, w drodze kolejnych eksperymentów, stopniowo zawężamy prawdopodobieństwo sukcesu albo porażki, a w jeszcze bardziej wyrafinowanej formie, określamy prawdopodobieństwo osiągnięcia ‘p’ sukcesów i ‘q’ porażek w serii ‘n’ prób.

Jak to może wyglądać w praktyce ? Powiedzmy, że mamy pomysł na biznes i staramy się znaleźć inwestorów. Spotykamy się z pierwszym możliwym z nich. Jeszcze nic z tego spotkania nie wynikło, ale mentalnie kreślimy mapę możliwych zachowań: każdy kolejny rozmówca może być tak jakby bardziej w tą stronę od tego pierwszego, albo jakby bardziej w przeciwną stronę. Spotykamy się z kolejnymi potencjalnymi inwestorami i za każdym razem staramy się wyciągać wnioski w podobny sposób: każdego kolejnego rozmówcę traktujemy jako typ, czyli jako reprezentatywny przykład jakiejś szerszej kategorii. W ten sposób tworzymy katalog możliwych typów zachowań u naszych potencjalnych inwestorów. Mniej lub bardziej świadomie tworzymy asocjacje: każdy typ zachowań kojarzymy z jakimś jednostkowym prawdopodobieństwem sukcesu albo porażki i jednocześnie dokonujemy skojarzenia z jakimiś czynnikami zewnętrznymi. „Jeżeli trafię na prezesa funduszu inwestycyjnego na początku kwartału, to mam większe prawdopodobieństwo zaangażowania go w negocjacje na temat finansowania mojego biznes planu, niż gdybym rozmawiał jedynie z analitykiem tego funduszu pod koniec okresu rozliczeniowego” – coś w tym rodzaju.

Jeżeli się temu bliżej przyjrzeć, mamy tu raz jeszcze do czynienia z fundamentalnym mechanizmem naszej psychiki, podobnie jak w przypadku odległości Euklidesowej. Kolejne doświadczenia są dla nas podstawą do budowania mentalnych kategorii oraz do kojarzenia ich wzajemnie między sobą. W ten sposób tworzy się język, którym się porozumiewamy.

Tyle na dzisiaj. Do zobaczenia w kolejnych wpisach na tym blogu.