More vigilant than sigmoid

My editorial on You Tube

 

I keep working on the application of neural networks as simulators of collective intelligence. The particular field of research I am diving into is the sector of energy, its shift towards renewable energies, and the financial scheme I invented some time ago, which I called EneFin. As for that last one, you can consult « The essential business concept seems to hold », in order to grasp the outline.

I continue developing the line of research I described in my last update in French: « De la misère, quoi ». There are observable differences in the prices of energy according to the size of the buyer. In many countries – practically in all the countries of Europe – there are two, distinct price brackets. One, which I further designated as PB, is reserved to contracts with big consumers of energy (factories, office buildings etc.) and it is clearly lower. Another one, further called PA, is applied to small buyers, mainly households and really small businesses.

As an economist, I have that intuitive thought in the presence of price forks: that differential in prices is some kind of value. If it is value, why not giving it some financial spin? I came up with the idea of the EneFin contract. People buy energy from a local supplier, in the amount Q, who sources it from renewables (water, wind etc.), and they pay the price PA, thus generating a financial flow equal to Q*PA. That flow buys two things: energy priced at PB, and participatory titles in the capital of their supplier, for the differential Q*(PA – PB). I imagine some kind of crowdfunding platform, which could channel the amount of capital K = Q*(PA – PB).

That K remains in some sort of fluid relationship to I, or capital invested in the productive capacity of energy suppliers. Fluid relationship means that each of those capital balances can date other capital balances, no hard feelings held. As we talk (OK, I talk) about prices of energy and capital invested in capacity, it is worth referring to LCOE, or Levelized Cost Of Electricity. The LCOE is essentially the marginal cost of energy, and a no-go-below limit for energy prices.

I want to simulate the possible process of introducing that general financial concept, namely K = Q*(PA – PB), into the market of energy, in order to promote the development of diversified networks, made of local suppliers in renewable energy.

Here comes my slightly obsessive methodological idea: use artificial intelligence in order to simulate the process. In classical economic method, I make a model, I take empirical data, I regress some of it on another some of it, and I come up with coefficients of regression, and they tell me how the thing should work if we were living in a perfect world. Artificial intelligence opens a different perspective. I can assume that my model is a logical structure, which keeps experimenting with itself and we don’t the hell know where exactly that experimentation leads. I want to use neural networks in order to represent the exact way that social structures can possibly experiment with that K = Q*(PA – PB) thing. Instead of optimizing, I want to see that way that possible optimization can occur.

I have that simple neural network, which I already referred to in « The point of doing manually what the loop is supposed to do » and which is basically quite dumb, as it does not do any abstraction. Still, it nicely experiments with logical structures. I am sketching its logical structure in the picture below. I distinguish four layers of neurons: input, hidden 1, hidden 2, and output. When I say ‘layers’, it is a bit of grand language. For the moment, I am working with one single neuron in each layer. It is more of a synaptic chain.

Anyway, the input neuron feeds data into the chain. In the first round of experimentation, it feeds the source data in. In consecutive rounds of learning through experimentation, that first neuron assesses and feeds back local errors, measured as discrepancies between the output of the output neuron, and the expected values of output variables. The input neuron is like the first step in a chain of perception, in a nervous system: it receives and notices the raw external information.

The hidden layers – or the hidden neurons in the chain – modify the input data. The first hidden neuron generates quasi-random weights, which the second hidden neuron attributes to the input variables. Just as in a nervous system, the input stimuli are assessed as for their relative importance. In the original algorithm of perceptron, which I used to design this network, those two functions, i.e. generating the random weights and attributing them to input variables, were fused in one equation. Still, my fundamental intent is to use neural networks to simulate collective intelligence, and intuitively guess those two functions are somehow distinct. Pondering the importance of things is one action and using that ponderation for practical purposes is another. It is like scientist debating about the way to run a policy, and the government having the actual thing done. These are two separate paths of action.

Whatever. What the second hidden neuron produces is a compound piece of information: the summation of input variables multiplied by random weights. The output neuron transforms this compound data through a neural function. I prepared two versions of this network, with two distinct neural functions: the sigmoid, and the hyperbolic tangent. As I found out, the way they work is very different, just as the results they produce. Once the output neuron generates the transformed data – the neural output – the input neuron measures the discrepancy between the original, expected values of output variables, and the values generated by the output neuron. The exact way of computing that discrepancy is made of two operations: calculating the local derivative of the neural function, and multiplying that derivative by the residual difference ‘original expected output value minus output value generated by the output neuron’. The so calculated discrepancy is considered as a local error, and is being fed back into the input neuron as an addition to the value of each input variable.

Before I go into describing the application I made of that perceptron, as regards my idea for financial scheme, I want to delve into the mechanism of learning triggered through repeated looping of that logical structure. The input neuron measures the arithmetical difference between the output of the network in the preceding round of experimentation, and that difference is being multiplied by the local derivative of said output. Derivative functions, in their deepest, Newtonian sense, are magnitudes of change in something else, i.e. in their base function. In the Newtonian perspective, everything that happens can be seen either as change (derivative) in something else, or as an integral (an aggregate that changes its shape) of still something else. When I multiply the local deviation from expected values by the local derivative of the estimated value, I assume this deviation is as important as the local magnitude of change in its estimation. The faster things happen, the more important they are, so do say. My perceptron learns by assessing the magnitude of local changes it induces in its own estimations of reality.

I took that general logical structure of the perceptron, and I applied it to my core problem, i.e. the possible adoption of the new financial scheme to the market of energy. Here comes sort of an originality in my approach. The basic way of using neural networks is to give them a substantial set of real data as learning material, make them learn on that data, and then make them optimize a hypothetical set of data. Here you have those 20 old cars, take them into pieces and try to put them back together, observe all the anomalies you have thus created, and then make me a new car on the grounds of that learning. I adopted a different approach. My focus is to study the process of learning in itself. I took just one set of actual input values, exogenous to my perceptron, something like an initial situation. I ran 5000 rounds of learning in the perceptron, on the basis of that initial set of values, and I observed how is learning taking place.

My initial set of data is made of two tensors: input TI and output TO.

The thing I am the most focused on is the relative abundance of energy supplied from renewable sources. I express the ‘abundance’ part mathematically as the coefficient of energy consumed per capita, or Q/N. The relative bend towards renewables, or towards the non-renewables is apprehended as the distinction between renewable energy QR/N consumed per capita, and the non-renewable one, the QNR/N, possibly consumed by some other capita. Hence, my output tensor is TO = {QR/N; QNR/N}.

I hypothesise that TO is being generated by input made of prices, costs, and capital outlays. I split my price fork PA – PB (price for the big ones minus price for the small ones) into renewables and non-renewables, namely into: PA;R, PA;NR, PB;R, and PB;NR. I mirror the distinction in prices with that in the cost of energy, and so I call LCOER and LCOENR. I want to create a financial scheme that generates a crowdfunded stream of capital K, to finance new productive capacities, and I want it to finance renewable energies, and I call KR. Still, some other people, like my compatriots in Poland, might be so attached to fossils they might be willing to crowdfund new installations based on non-renewables. Thus, I need to take into account a KNR in the game. When I say capital, and I say LCOE, I sort of feel compelled to say aggregate investment in productive capacity, in renewables, and in non-renewables, and I call it, respectively, IR and INR. All in all, my input tensor spells TI = {LCOER, LCOENR, KR, KNR, IR, INR, PA;R, PA;NR, PB;R, PB;NR}.

The next step is scale and measurement. The neural functions I use in my perceptron like having their input standardized. Their tastes in standardization differ a little. The sigmoid likes it nicely spread between 0 and 1, whilst the hyperbolic tangent, the more reckless of the two, tolerates (-1) ≥ x ≥ 1. I chose to standardize the input data between 0 and 1, so as to make it fit into both. My initial thought was to aim for an energy market with great abundance of renewable energy, and a relatively declining supply of non-renewables. I generally trust my intuition, only I like to leverage it with a bit of chaos, every now and then, and so I ran some pseudo-random strings of values and I chose an output tensor made of TO = {QR/N = 0,95; QNR/N = 0,48}.

That state of output is supposed to be somehow logically connected to the state of input. I imagined a market, where the relative abundance in the consumption of, respectively, renewable energies and non-renewable ones is mostly driven by growing demand for the former, and a declining demand for the latter. Thus, I imagined relatively high a small-user price for renewable energy and a large fork between that PA;R and the PB;R. As for non-renewables, the fork in prices is more restrained (than in the market of renewables), and its top value is relatively lower. The non-renewable power installations are almost fed up with investment INR, whilst the renewables could still do with more capital IR in productive assets. The LCOENR of non-renewables is relatively high, although not very: yes, you need to pay for the fuel itself, but you have economies of scale. As for the LCOER for renewables, it is pretty low, which actually reflects the present situation in the market.

The last part of my input tensor regards the crowdfunded capital K. I assumed two different, initial situations. Firstly, it is virtually no crowdfunding, thus a very low K. Secondly, some crowdfunding is already alive and kicking, and it is sort of slightly above the half of what people expect in the industry.

Once again, I applied those qualitative assumptions to a set of pseudo-random values between 0 and 1. Here comes the result, in the table below.

 

Table 1 – The initial values for learning in the perceptron

Tensor Variable The Market with virtually no crowdfunding   The Market with significant crowdfunding
Input TI LCOER         0,26           0,26
LCOENR         0,48           0,48
KR         0,01   <= !! =>         0,56    
KNR         0,01            0,52    
IR         0,46           0,46
INR         0,99           0,99
PA;R         0,71           0,71
PA;NR         0,46           0,46
PB;R         0,20           0,20
PB;NR         0,37           0,37
Output TO QR/N         0,95           0,95
QNR/N         0,48           0,48

 

The way the perceptron works means that it generates and feeds back local errors in each round of experimentation. Logically, over the 5000 rounds of experimentation, each input variable gathers those local errors, like a snowball rolling downhill. I take the values of input variables from the last, i.e. the 5000th round: they have the initial values, from the table above, and, on the top of them, there is cumulative error from the 5000 experiments. How to standardize them, so as to make them comparable with the initial ones? I observe: all those final output values have the same cumulative error in them, across all the TI input tensor. I choose a simple method for standardization. As the initial values were standardized over the interval between 0 and 1, I standardize the outcoming values over the interval 0 ≥ x ≥ (1 + cumulative error).

I observe the unfolding of cumulative error along the path of learning, made of 5000 steps. There is a peculiarity in each of the neural functions used: the sigmoid, and the hyperbolic tangent. The sigmoid learns in a slightly Hitchcockian way. Initially, local errors just rocket up. It is as if that sigmoid was initially yelling: ‘F******k! What a ride!’. Then, the value of errors drops very sharply, down to something akin to a vanishing tremor, and starts hovering lazily over some implicit asymptote. Hyperbolic tangent learns differently. It seems to do all it can to minimize local errors whenever it is possible. Obviously, it is not always possible. Every now and then, that hyperbolic tangent produces an explosively high value of local error, like a sudden earthquake, just to go back into forced calm right after. You can observe those two radically different ways of learning in the two graphs below.

Two ways of learning – the sigmoidal one and the hyper-tangential one – bring interestingly different results, just as differentiated are the results of learning depending on the initial assumptions as for crowdfunded capital K. Tables 2 – 5, further below, list the results I got. A bit of additional explanation will not hurt. For every version of learning, i.e. sigmoid vs hyperbolic tangent, and K = 0,01 vs K ≈ 0,5, I ran 5 instances of 5000 rounds of learning in my perceptron. This is the meaning of the word ‘Instance’ in those tables. One instance is like a tensor of learning: one happening of 5000 consecutive experiments. The values of output variables remain constant all the time: TO = {QR/N = 0,95; QNR/N = 0,48}. The perceptron sweats in order to come up with some interesting combination of input variables, given this precise tensor of output.

 

Table 2 – Outcomes of learning with the sigmoid, no initial crowdfunding

 

The learnt values of input variables after 5000 rounds of learning
Learning with the sigmoid, no initial crowdfunding
Instance 1 Instance 2 Instance 3 Instance 4 Instance 5
cumulative error 2,11 2,11 2,09 2,12 2,16
LCOER 0,7617 0,7614 0,7678 0,7599 0,7515
LCOENR 0,8340 0,8337 0,8406 0,8321 0,8228
KR 0,6820 0,6817 0,6875 0,6804 0,6729
KNR 0,6820 0,6817 0,6875 0,6804 0,6729
IR 0,8266 0,8262 0,8332 0,8246 0,8155
INR 0,9966 0,9962 1,0045 0,9943 0,9832
PA;R 0,9062 0,9058 0,9134 0,9041 0,8940
PA;NR 0,8266 0,8263 0,8332 0,8247 0,8155
PB;R 0,7443 0,7440 0,7502 0,7425 0,7343
PB;NR 0,7981 0,7977 0,8044 0,7962 0,7873

 

 

Table 3 – Outcomes of learning with the sigmoid, with substantial initial crowdfunding

 

The learnt values of input variables after 5000 rounds of learning
Learning with the sigmoid, substantial initial crowdfunding
Instance 1 Instance 2 Instance 3 Instance 4 Instance 5
cumulative error 1,98 2,01 2,07 2,03 1,96
LCOER 0,7511 0,7536 0,7579 0,7554 0,7494
LCOENR 0,8267 0,8284 0,8314 0,8296 0,8255
KR 0,8514 0,8529 0,8555 0,8540 0,8504
KNR 0,8380 0,8396 0,8424 0,8407 0,8369
IR 0,8189 0,8207 0,8238 0,8220 0,8177
INR 0,9965 0,9965 0,9966 0,9965 0,9965
PA;R 0,9020 0,9030 0,9047 0,9037 0,9014
PA;NR 0,8189 0,8208 0,8239 0,8220 0,8177
PB;R 0,7329 0,7356 0,7402 0,7375 0,7311
PB;NR 0,7891 0,7913 0,7949 0,7927 0,7877

 

 

 

 

 

Table 4 – Outcomes of learning with the hyperbolic tangent, no initial crowdfunding

 

The learnt values of input variables after 5000 rounds of learning
Learning with the hyperbolic tangent, no initial crowdfunding
Instance 1 Instance 2 Instance 3 Instance 4 Instance 5
cumulative error 1,1 1,27 0,69 0,77 0,88
LCOER 0,6470 0,6735 0,5599 0,5805 0,6062
LCOENR 0,7541 0,7726 0,6934 0,7078 0,7257
KR 0,5290 0,5644 0,4127 0,4403 0,4746
KNR 0,5290 0,5644 0,4127 0,4403 0,4746
IR 0,7431 0,7624 0,6797 0,6947 0,7134
INR 0,9950 0,9954 0,9938 0,9941 0,9944
PA;R 0,8611 0,8715 0,8267 0,8349 0,8450
PA;NR 0,7432 0,7625 0,6798 0,6948 0,7135
PB;R 0,6212 0,6497 0,5277 0,5499 0,5774
PB;NR 0,7009 0,7234 0,6271 0,6446 0,6663

 

 

Table 5 – Outcomes of learning with the hyperbolic tangent, substantial initial crowdfunding

 

The learnt values of input variables after 5000 rounds of learning
Learning with the hyperbolic tangent, substantial initial crowdfunding
Instance 1 Instance 2 Instance 3 Instance 4 Instance 5
cumulative error -0,33 0,2 -0,06 0,98 -0,25
LCOER (0,1089) 0,3800 0,2100 0,6245 0,0110
LCOENR 0,2276 0,5681 0,4497 0,7384 0,3111
KR 0,3381 0,6299 0,5284 0,7758 0,4096
KNR 0,2780 0,5963 0,4856 0,7555 0,3560
IR 0,1930 0,5488 0,4251 0,7267 0,2802
INR 0,9843 0,9912 0,9888 0,9947 0,9860
PA;R 0,5635 0,7559 0,6890 0,8522 0,6107
PA;NR 0,1933 0,5489 0,4252 0,7268 0,2804
PB;R (0,1899) 0,3347 0,1522 0,5971 (0,0613)
PB;NR 0,0604 0,4747 0,3306 0,6818 0,1620

 

The cumulative error, the first numerical line in each table, is something like memory. It is a numerical expression of how much experience has the perceptron accumulated in the given instance of learning. Generally, the sigmoid neural function accumulates more memory, as compared to the hyper-tangential one. Interesting. The way of processing information affects the amount of experiential data stored in the process. If you use the links I gave earlier, you will see different logical structures in those two functions. The sigmoid generally smoothes out anything it receives as input. It puts the incoming, compound data in the negative exponent of the Euler’s constant e = 2,72, and then it puts the resulting value as part of the denominator of 1. The sigmoid is like a bumper: it absorbs shocks. The hyperbolic tangent is different. It sort of exposes small discrepancies in input. In human terms, the hyper-tangential function is more vigilant than the sigmoid. As it can be observed in this precise case, absorbing shocks leads to more accumulated experience than vigilantly reacting to observable change.

The difference in cumulative error, observable in the sigmoid-based perceptron vs that based on hyperbolic tangent is particularly sharp in the case of a market with substantial initial crowdfunding K. In 3 instances on 5, in that scenario, the hyper-tangential perceptron yields a negative cumulative error. It can be interpreted as the removal of some memory, implicitly contained in the initial values of input variables. When the initial K is assumed to be 0,01, the difference in accumulated memory, observable between the two neural functions, significantly shrinks. It looks as if K ≥ 0,5 was some kind of disturbance that the vigilant hyperbolic tangent attempts to eliminate. That impression of disturbance created by K ≥ 0,5 is even reinforced as I synthetically compare all the four sets of outcomes, i.e. tables 2 – 5. The case of learning with the hyperbolic tangent, and with substantial initial crowdfunding looks radically different from everything else. The discrepancy between alternative instances seems to be the greatest in this case, and the incidentally negative values in the input tensor suggest some kind of deep shakeoff. Negative prices and/or negative costs mean that someone external is paying for the ride, probably the taxpayers, in the form of some fiscal stimulation.

I am consistently delivering good, almost new science to my readers, and love doing it, and I am working on crowdfunding this activity of mine. As we talk business plans, I remind you that you can download, from the library of my blog, the business plan I prepared for my semi-scientific project Befund  (and you can access the French version as well). You can also get a free e-copy of my book ‘Capitalism and Political Power’ You can support my research by donating directly, any amount you consider appropriate, to my PayPal account. You can also consider going to my Patreon page and become my patron. If you decide so, I will be grateful for suggesting me two things that Patreon suggests me to suggest you. Firstly, what kind of reward would you expect in exchange of supporting me? Secondly, what kind of phases would you like to see in the development of my research, and of the corresponding educational tools?

De la misère, quoi

 

Mon éditorial sur You Tube

 

Je reviens vers ma recherche sur le marché d’énergie et – pour la n-ième fois – j’essaie de formaliser de façon scientifiquement rigoureuse mon concept EneFin, donc celui de solution financière pour promouvoir le développement d’énergies renouvelables. L’année dernière, j’avais déjà beaucoup tourné autour du sujet et il y a un je ne sais quoi d’obscur, là. Quelque chose qui me bloque intellectuellement. Vous pouvez consulter, par exemple, « Alois in the middle » pour en savoir plus sur mes contorsions conceptuelles à ce sujet.

Alors, une approche de plus. J’ouvre de façon canonique, par les prémisses, donc par les raisons pour quiconque de ne pas s’en foutre éperdument de tout ce bazar. Dans un rapport sur le secteur d’énergie, publié par IRENA (International Renewable Energy Agency), deux observations me donnent un peu de démangeaison (économique). D’une part, le coût de génération d’énergies renouvelables, le soi-disant LCOE (Levellized Cost of Electricity), a chuté abruptement ces dernières années. D’autre part, l’investissement en des nouvelles capacités de génération en renouvelables a chuté aussi. Les énergies renouvelables ont la particularité de ne coûter rien en tant que telles ; ce qui coûte du pognon c’est la mise en place et la maintenance des technologies. Voyez « Ce que le prof en moi veut dire sur LCOE » pour en savoir plus. De tout en tout, les technologies d’énergies renouvelables ont l’air d’entrer dans la phase de banalisation. La technologie coûte de moins en moins, elle perd de valeur de plus en plus vite, et son produit final est de plus en plus bon marché aussi. D’autre part, les marchés bien structurés d’énergie ont une tendance à développer deux zones de prix : ceux relativement bas pour les gros consommateurs institutionnels et ceux plus élevés pour les petits consommateurs individuels (ainsi que petits institutionnels). Vous pouvez consulter « Deux cerveaux, légèrement différents l’un de l’autre »  pour en savoir plus.

Il y a un autre truc, qui commence à se dessiner dans ma recherche récente. Le développement quantitatif du secteur d’énergie en général semble prendre lieu plutôt en des chocs abrupts de court terme qu’en des tendances longues. A ce sujet précis, j’ai pondu récemment un article et j’essaie de convaincre quelqu’un que ça a du sens. Ce brouillon est intitulé « Apprehending Energy Efficiency ».

Je continue canonique, toujours. L’objectif de ma recherche est de mettre au point un mécanisme de financement des petites installations locales d’énergies renouvelables, qui utiliserait précisément ces deux phénomènes : la disparité des prix, qui se manifeste à mesure que le marché se développe et se structure, et la prédisposition de l’industrie à réagir aux chocs plutôt qu’à des stimuli gentils et patients. Mon hypothèse de travail est que la disparité observable dans les prix d’énergie peut être utilisée pour créer des chocs financiers contrôlés et locaux, qui à leur tour peuvent stimuler le développement desdites petites installations locales.

La méthode générale pour l’exploration et la vérification de cette hypothèse consiste à tester, sous plusieurs angles différents, un schéma financier qui exploite, précisément, la disparité des prix. Un fournisseur local d’énergie vend une certaine quantité Q d’énergie à des consommateurs tout aussi locaux à un prix relativement élevé, le PA, typique pour le marché des petits consommateurs, mais il la vend en paquets complexes, qui contiennent de l’énergie strictement dite, au prix PB, relativement bon marché, normalement réservé aux gros consommateurs industriels, plus des titres participatifs dans le capital du fournisseur. Ces titres participatifs représentent un ensemble des droits aux actifs du fournisseur et la valeur comptable de ces droits est K. La valeur-marché de l’énergie vendue est de Q*PB = E. La marge agrégée Q*(PA – PB), crée par la vente de la quantité Q d’énergie, est donc équivalente à du capital K investi dans le bilan du fournisseur d’énergie. Logiquement, la valeur-marché que l’énergie Q aurait aux prix petit consommateur PA est égale à la somme du capital K et de la valeur-marché E. Dans les équations ci-dessous je donne l’idée générale.

 

Q*(PA – PB) = K

Q*PB = E

Q*PA = K + E

PA > PB

PB  ≥  LCOE

Mon idée suivante est d’explorer les conditions de faisabilité de ce schéma financier, ainsi que de l’optimiser. La structure générale du coût de production d’énergie, donc du LCOE, dit que la quantité d’énergie produite est une fonction du capital investi dans les capacités de production. Le capital K dans mes équations demeure dans une certaine proportion au capital I investi dans les actifs productifs. Par conséquent, K a une influence fonctionnelle sur Q et c’est ainsi que la fonction f1, telle que f1(K) = Q, entre dans le jeu. La même structure logique du LCOE suggère que les prix d’énergie sont des manifestations de la façon dont le capital K est utilisé, puisqu’ils dépendent du coefficient K/Q et en même temps ils dépendent de la structure compétitive du marché ainsi que de sa structure institutionnelle. Seulement ça, ce serait trop simple. La logique Keynésienne suggère que ça marche aussi dans le sens inverse : le capital I investi dans la capacité de production, ainsi que sa fraction K collectée à travers le schéma financier que je viens d’esquisser dépendent toutes les deux des prix et des quantités produites d’énergie.

J’ai donc là un joli petit nœud logique : des variables qui dépendent mutuellement l’une de l’autre. Voilà aussi une belle occasion de faire un pas de plus hors de ma caverne d’économiste classique Smithonien et se tourner vers l’intelligence artificielle et les réseaux neuronaux. J’assume donc que le secteur d’énergie est une structure intelligente qui est capable de s’adapter aux impératifs de la civilisation humaine – survivre et avoir accès à Netflix – et cette adaptation peut se faire à travers deux chemins qu’emprunte toute intelligence digne de ce nom : expérimentation et abstraction.

J’imagine donc une structure intelligente plus ou moins conforme à ces équations là-dessus. Ce que je veux c’est une fourniture abondante d’énergie renouvelable. « Abondante » est un aspect de la chose, « renouvelable » en et une autre. En ce qui concerne l’abondance d’énergie, la consommation finale annuelle par tête d’habitant, fréquemment mesurée en kilogrammes (ou bien en tonnes) d’équivalent pétrole, semble être une mesure à forte assise empirique. Je structure cette abondance relative en deux types : renouvelable et non-renouvelable. Ici, je répète une remarque à propos de cette classification, une remarque que j’avais déjà faite dans « Les 2326 kWh de civilisation » : formellement, lorsqu’on brûle des bio-fuels, comme de la paille ou de la sciure de bois, c’est du renouvelable dans le sens que ce n’est ni du fossile ni de la fission nucléaire. Encore, faut venir là où j’habite, moi, pour comprendre que ce type précis de renouvelable n’est pas précisément soutenable à la longue. Vous voulez littéralement voir ce que vous respirez, sans être capable de voir grand-chose d’autre ? Eh bien, venez à Krakow, Pologne, en saison de chauffage. Vous verrez par vous-mêmes ce que veut dire l’usage abondant des bio-fuels.

En tout cas, ma structure intelligente distingue deux sous-catégories de Q (je sais, le jeu de mots, avançons SVP) : QR/N pour la consommation d’énergie renouvelable par tête d’habitant et QNR/N pour les non-renouvelables par la même tête d’habitant. Enfin, pas tout à fait la même, puisque la tête d’habitant qui roule sa vie sur les renouvelables démontre, très probablement, des schémas de comportement différents de celle qui s’en tient encore aux fossiles lorsqu’il s’agit d’alimenter le frigo. Je veux QR/N et mettre le QNR/N gentiment en veilleuse, juste en cas où une autre glaciation serait à venir et il y aurait besoin de chauffer la planète, juste un tantinet.

En tout cas, j’ai deux variables de résultat : [QR/N] et [QNR/N]. Ma structure intelligente peut suivre quatre sentiers alternatifs de changement. Le plus désirable des quatre est celui où [QR/N] croît et [QNR/N] décroit, en corrélation négative. Par ordre de désirabilité, le second sentier est celui de Les trois autres sont les suivants : i) [QR/N] décroit et [QNR/N] croît en corrélation négative ii) [QR/N] et [QNR/N] décroissent tous les deux et enfin le cas iii) où [QR/N] et [QNR/N] croissent en concours.

Mes variables d’entrée sont tout d’abord les prix d’énergie PA et PB, possiblement sous-catégorisés en des prix d’énergie renouvelable et non-renouvelable. L’un des trucs que je voudrais voir joliment simulé par un réseau neuronal est précisément ce « possiblement sous-catégorisés ». Quel sentier d’essai et erreur conduit à la convergence entre les prix de renouvelables et celui des fossiles ? Quel autre sentier peut conduire vers la divergence ? Quelles fourchettes de convergence ou divergence peuvent apparaître le long de ces sentiers ? Quelle relation avec le LCOE ? Voilà des choses intéressantes à explorer.

Deux autres variables d’entrée sont celles pertinentes au capital : le capital I investi dans la capacité productrice et son sous-ensemble K, collecté à travers le schéma financier que j’ai présenté quelques paragraphes plus tôt.

Somme toute, voilà que j’atterris avec deux tenseurs : celui de résultat TS et celui d’entrée TE. Le tenseur d’entrée se décompose comme TE = [(LCOER), [(LCOENR), (KR), (KNR), (IR), (INR), (PA;R), (PA;NR), (PB;R), (PB;NR)] et celui de résultat c’est TS = [(QR/N), (QNR/N)]. L’action niveau TE produit un résultat niveau TS. Un réseau neuronal peut connecter les deux tenseurs à travers deux sortes de fonction : expérimentation et abstraction.

L’expérimentation, ça peut prendre lieu à travers un perceptron à couches multiples. Je reprends le même, simple algorithme que j’avais déjà mentionné dans « Ce petit train-train des petits signaux locaux d’inquiétude ». Je prends donc mes deux tenseurs je crée un premier ensemble de valeurs empiriques, une valeur par variable. Je les standardise dans l’intervalle entre 0 et 1. Cela veut dire que le prix (PB;R), par exemple, est exprimé comme le pourcentage du prix maximal observé dans le marché. Si j’écris PB;R = 0,16, c’est un prix local qui est égal à 16% du prix maximal jamais observé dans ce marché précis. D’autres variables sont standardisées de la même façon.

Maintenant, je fais une chose peu usuelle – pour autant que je sache – dans l’application des réseaux neuronaux. La pratique normale est de donner à notre algorithme un ensemble de données aussi large que possible dans la phase d’apprentissage – pour découvrir des intervalles les plus plausibles pour chaque variable – et ensuite optimiser le modèle sur la base de cet apprentissage. Moi, je veux observer la façon dont le perceptron va apprendre. Je ne veux pas encore optimiser dans le sens strict du terme.

Je prends donc ce premier ensemble des valeurs empiriques standardisées pour mes deux tenseurs. Les voilà, dans Tableau 1, ci-dessous :

 

Tableau 1

Tenseur Variable Valeur initiale standardisée
TE  LCOER         0,26
 LCOENR         0,48
 KR         0,56
 KNR         0,52
 IR         0,46
 INR         0,99
 PA;R         0,71
 PA;NR         0,46
 PB;R         0,20
 PB;NR         0,37
TS  QR/N         0,95
 QNR/N         0,48

 

La situation initiale que je simule est donc celle, où la consommation d’énergie renouvelable par tête d’habitant QR/N est près du maximum empiriquement observable dans le secteur, pendant que la consommation des non-renouvelables QNR/N est à peu près à la moitié (48%) de son max respectif. Les prix avantageux d’énergie, réservés aux grands consommateurs, sont respectivement à PB;R = 20% et PB;NR = 37% de leurs maximums observables. Les prix plus élevés, normalement payés par les petits utilisateurs, y compris les ménages, sont à PA;R = 71% du max pour les renouvelables et PA;NR = 46% pour les non-renouvelables. Les marges initiales PA – PB sont donc respectivement à PA;R – PB;R = 71% – 20% = 51% pour les renouvelables et  PA;NR – PB;NR = 46% – 37% = 9% en ce qui concerne les non-renouvelables.

Voilà donc un marché initial où une demande relativement élevée pour les énergies renouvelables crée une fourchette des prix particulièrement défavorable pour ceux parmi les petits clients qui veulent ne consommer que ce type d’énergie. En même temps, les non-renouvelables sont un peu moins en demande et par conséquent la même fourchette des prix PA – PB est beaucoup plus étroite dans leur cas.

Les quantités de capital collectées à travers des plateformes de financement participatifs, donc mes K, sont à KR = 56% du max pour les fournisseurs d’énergies renouvelables et KNR = 52% dans le marché des non-renouvelables. Maintenant, je reviens à mon modèle, plus particulièrement à l’équation Q*(PA – PB) = K. Avec les quantités et les prix simulés ici et avec l’assomption de population N = constante, KR devrait être à QR*(PA;R – PB;R) = 0,95*(0,71 – 0,2) = 0,4845, pendant que la valeur initiale arbitraire est de 0,56. Les renouvelables sont donc légèrement sur-financées à travers le mécanisme participatif. Pour les non-renouvelables, le même calcul se présente comme KNR = QNR*(PA;NR – PB;NR) = 0,48*(0,46 – 0,37) = 0,0432 donc bieeeen en-dessous du KNR = 52% fixés arbitrairement comme valeur initiale. Si les renouvelables sont légèrement sur-financées, les non-renouvelables nagent carrément dans du pognon déséquilibré.

En ce qui concerne l’investissement I en capacités productives, il est initialement fixé à IR = 0,46 pour les renouvelables et INR = 0,99 pour les non-renouvelables. Les renouvelables sont donc clairement sous-investis, pendant que les fossiles et les fissions nucléaires sont gâtés en termes d’actifs productifs.

Les coûts de production d’énergie, donc les LCOE, sont peut-être les plus durs à exprimer en valeurs standardisées. En effet, lorsqu’on observe la signification économique du LCOE, la façon dont ça bouge semble avoir plus d’importance que la façon do ça se tient en place. Les valeurs initiales que j’ai fixées, donc LCOER = 0,16 et LCOENR = 0,48 sont une tentative de recréer la situation présente dans le secteur de l’énergie, où le LCOE des renouvelables plonge carrément, la tête en avant, pendant que le LCOE des non-renouvelables suit une trajectoire descendante quoique beaucoup plus respectable dans sa descente.

Alors, mon petit perceptron. Il est fait de juste deux neurones, l’un après l’autre. Le premier o l’affaire directement au stimuli du tenseur d’entrée TE = [(LCOER), [(LCOENR), (KR), (KNR), (IR), (INR), (PA;R), (PA;NR), (PB;R), (PB;NR)] et il attribue à chaque variable de ce tenseur un coefficient de pondération. C’est comme ces neurones superficiels connectés à notre appareil sensoriel, qui décident s’il est plus important de s’occuper de cette grosse tâche brune qui grandit très vite (l’ours grizzly qui charge sur moi) ou bien de ce disque lumineux qui tourne progressivement de l’orange vers le jaune (soleil dans le ciel).

Je ne sais pas comme vous, mais moi, je m’occuperais plutôt de l’ours. Il a l’air comme un peu plus pressant, comme stimulation sensorielle. Encore que ce neurone de première couche, il a de la liberté d’expérimenter avec l’importance relative des choses. Il attribue des coefficients aléatoires de pondération à chaque variable du tenseur TE. Il produit un cocktail d’information de la forme : TE(transformé) = [(LCOER)*p1 + (LCOENR)*p2 + (KR)*p3 + (KNR)*p4 + (IR)*p5 +  (INR)*p6 + (PA;R)*p7 + (PA;NR)*p8 + (PB;R)*p9 + (PB;NR)*p10. Les « pi » sont précisément les coefficients de pondération que le premier neurone attribue aux variables d’entrée.

Le second neurone, qui consulte le premier neurone en matière de ce qui se passe, c’est l’intello du lot. Il dispose d’une fonction de transformation neuronale. Elle est basée, en règle générale, sur la fonction exponentielle. Le tenseur TE(transformé) produit par le premier neurone est tout d’abord mis en négatif, donc « – TE(transformé) » et ce négatif est ensuite mis en exposant de la constante e = 2,72 etc. On tourne donc autour de e – TE(transformé) . Ceci fait, l’intello a deux façons usuelles d’en faire un usage cognitif : en sigmoïde ou bien en tangente hyperbolique. Je viens de découvrir que cette distinction a de l’importance, dans ce cas précis. J’y reviendrai plus tard. En tout cas, cette fonction de transformation – sigmoïde ou tangente hyperbolique – sert à produire une valeur hypothétique des variables de résultat, donc du tenseur TS = [(QR/N), (QNR/N)]. Ceci fait, le neurone intello calcule la dérivée locale de ce résultat hypothétique ainsi que la déviation dudit résultat par rapport aux valeurs originales TS = [(QR/N) = 0,95 ; (QNR/N) = 0,48]. La dérivée multipliée par la déviation donne une erreur locale. La somme de ces erreurs locales en ensuite transmise au premier neurone, ce concierge à l’entrée du système, avec la commande « Ajoute ça, s’il te plaît, aux valeurs initiales du TE, puis transforme le une nouvelle fois et donne-moi la nouvelle valeur TE(transformé) ».

Ça se répète, encore et encore. J’ai opté pour 5000 tours de cet encore et j’ai observé le processus d’apprentissage de mes deux neurones. Plus précisément, j’ai observé la valeur de l’erreur cumulative (donc sur les deux variables de résultat) en fonction du temps d’apprentissage. Voilà que la première différence saute aux yeux en ce qui concerne la fonction neuronale appliquée. Je la présente sous forme de deux graphes, ci-dessous. Si le neurone intello de la famille utilise la fonction sigmoïde, le processus d’apprentissage tend à réduire l’erreur expérimentale plutôt vite, pour osciller ensuite dans un intervalle beaucoup plus petit. C’est un schéma du type « un choc suivi par une adaptation progressive ». En revanche, la tangente hyperbolique apprend à travers la création délibérée des chocs impressionnants, entrecoupés par des longues périodes d’accalmie.

 

Voilà donc deux sentiers d’apprentissage très différents et ils produisent des résultats très différents. Tableau 2, ci-dessous, présente les valeurs apprises par les deux versions de mon réseau. Le sigmoïde conseille de pomper la valeur relative de toutes les variables d’entrée, pendant que la tangente hyperbolique est d’avis que la seule variable du TE digne de maximisation est l’investissement en capacité productrice des non-renouvelables pendant que le reste, faut les discipliner. Le plus intriguant c’est les valeurs négatives de LCOER et de PB;R. Pour LCOER = – 0,11 cela veut probablement dire soit une stimulation fiscale forte, soit une situation où les fournisseurs d’énergies renouvelables vendent leurs actifs productifs en masse. Le PB;R = – 0,19 c’est sans doute un appel à la stimulation fiscale des prix d’énergie renouvelable.

Voilà donc que le sigmoïde devient libéral et la tangente hyperbolique tourne en étatiste – interventionniste. Encore un petit test avec l’équation Q*(PA – PB) = K. Les valeurs conseillées par le sigmoïde libéral donnent  QR*(PA;R – PB;R) = 0,95*(0,90 – 0,73) = 0,1615 et QNR*(PA;NR – PB;NR) = 0,48*(0,82 – 0,79) = 0,0144 , contre les K appris indépendamment comme KR = 0,85 et KNR = 0,84. Le sigmoïde libéral veut donc monétiser significativement le secteur d’énergie. Plus de capital liquide veut dire plus de flexibilité et un cycle de vie beaucoup plus court en ce qui concerne les technologies en place.

La tangente hyperbolique interventionniste préconise QR*(PA;R – PB;R) = 0,95*[0,56 – (-0,19)] = 0,7125 et QNR*(PA;NR – PB;NR) = 0,48*(0,19 – 0,06) = 0,0624 contre KR = 0,34 et KNR = 0,28. Définitivement moins de pognon collecté à travers du crowdfunding. De la misère, quoi.

 

Tableau 2

Tenseur Variable Valeur initiale standardisée Valeur apprise par le réseau basé sur la fonction sigmoïde Valeur apprise par le réseau basé la tangente hyperbolique
TE  LCOER         0,26         0,75       (0,11)
 LCOENR         0,48         0,83         0,23
 KR         0,56         0,85         0,34
 KNR         0,52         0,84         0,28
 IR         0,46         0,82         0,19
 INR         0,99         1,00         0,98
 PA;R         0,71         0,90         0,56
 PA;NR         0,46         0,82         0,19
 PB;R         0,20         0,73       (0,19)
 PB;NR         0,37         0,79         0,06
TS  QR/N         0,95    
 QNR/N         0,48    

 

Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ?

Carl Lagerfeld and some guest blogging from Emilien Chalancon, my student

My editorial on You Tube

 

This time, instead of publishing my own train of thought, I am publishing the work of my student, CHALANCON Emilien, from Université Jean Monnet, Saint-Etienne, France (Department : Business and Administration, IUT Saint-Etienne). This is an essay prepared for a course in International Economic Relations, and devoted to the phenomenon of the so-called Yellow Jacket Movement.

I publish my students’ work, with their consent, of course, when I find a particular piece of writing particularly mature and bearing a sharp scientific edge. Here comes a piece of writing that shows intellectual maturity and the capacity to think beyond political correctness.

When I read any news about the Yellow Jacket Movement, I recall that social advertising, in 2008, precisely for yellow jackets and road safety, featuring Carl Lagerfeld saying: ‘C’est jaune, c’est moche, mais ça peut vous sauver la vie’, which, in English, spells: ‘It’s yellow, it’s ugly, but it can save your life’. Go figure why I make this association, still I tend to perceive French people in yellow vests as sort of dashing and trendy. Following some trends, anyway.

 

Here comes the exact wording of the essay by Emilien Chalancon.

 

FRANCE and Yellow Jacket movement

 

 To begin…

Liberté. Egalité. Fraternité. Over time, there is one nation has been differentiated from others by its freedom, social system and diversity: FRANCE. In fact, this state was the creator of the notion “soft power” and social security system. As you know, a big part of our medical treatment, school education, unemployment revenue is taken care by the state, it’s free. We call that “sécurité sociale”.

Citizens have the deep conviction that workers must pay contributions to people in need. That’s France: mutual help and respect. This is due to a national distribution of richness: 20 % percent of revenue goes to the tax system. The People is the Nation.

But, unfortunately, what made the greatness of my country before, is today a national and international element of discord. A part of the population is fade of the government and direct debits in our incomes. For some French people, the contribution for the unemployed, and other health insurances is too high.

Furthermore, citizens have to pay for wages of civil servants ( 5 million live in France). This collective tax payment, which is increases every year, force people to develop a hate around the government.

The social system is constantly calling into question also according to the crisis and many national protest movements. The last one is the most symbolic and violent of this century for my state. Since November, the “yellow jackets” riot with strong aggressiveness and this affected all the country.

The most alarming is that it spreads to economic and financial level’s inside and outside France (rate of jobs, Gross Domestic Product, National Stock Exchange). This last idea brings us to the following problematic: What are the economic and financial consequences of the Yellow Jacket movement at the domestic and international level for France?

First, we will explain the movement of yellow jackets. Secondly, we will see the economic and financial consequences at the domestic level. And then, we will finish with the consequences at the international scale.

 

I-Origin of Yellow Jacket

II-Economic and financial consequences at the domestic level II-Economic and financial consequences at the international scale

     I-Origin of Yellow Jacket

 Since few years, the French government has to face with endogenous and exogenous elements. The financial crisis of 2OO8 encouraged the State to raise taxes, cost of living and grew dramatically the public debt. This was necessary because of our social system : as I said before, it’s based on equal distribution of income. But salaries of the people did not follow that trend. A certain number of inhabitants still are not able to pay taxes and to live.

The price of food, clothes, gas, rent, petrol are always increasing. In November 2018, the government raised the amount of 8 centimes for petrol and 10 centimes for gasoline (= 0,35 PLN). This was the straw that broke the camel’s back! People are exhausted about the government.

From November 17th, 2018, the movement is organized around road obstructions on highway and national roads. After many violence with police and none dialogue with the President, yellow jackets demonstrators started to destroy symbolic national monuments. Actually, they want to overthrow the establish governments and believe that Mr. Macron didn’t listen the “national anger”.

But why people reacted just for that ?

For my point of view, I didn’t understand the reaction. In our history, my people always made crazy revolutions from very soft reasons. Since 2 years, our economy is on top 7 on the international ladder, we also won the last football world cup in Russia (it creates very powerful social link for a country to win a football cup).

The election of Mr. Macron (pro-entrepreneurial) encouraged many citizens to create their own business and promoted commerce. I mean, the environment was very enjoyable. But, a little rise of the price of petrol, and everything goes wrong…

To finish with, I think the life is too much comfortable in France. We are used to live with excessively wellbeing according to our social care system. A little inconvenience makes people mad. This is another argument that justify the creation of Yellow Jacket movement.

The issue is very dramatic for the economy and the finance of France: the minister of economy, Mr. Lemaire, speaks about a “disaster”.

II-Economic and financial consequences at the domestic level Economical aspect:

First, France has the world’s 6th largest economy by 2018 nominal figures and the 10th largest economy by PPP figures. It has the 3rd largest economy in the European Union. It is an agricultural, industrial and tourist power both on a European and on a global scale. France has a diversified economy: industrial, tourism, luxury, aerospace engineering.

The industrial sector (chemical, metallurgical, automobile) is one of the most develop and profitable for the State (12.4% of GDP). There is big group likes: Boiron, SNF, ArcelorMittal, Omerin and so on…

The Yellow Jacket movement has strongly compromised the activity of its companies. In fact, among the 280 000 participants of manifestations, a large number are workers and other employees of these industrial enterprises. Due to a significant number of demonstrators over the country, businesses have difficulty to hiring massively qualified workers.

Furthermore, the tourism is another big sector of revenues (84 million international tourist arrivals every years). The principal destination is of course Paris. Unfortunately, deteriorations by demonstrators of l’Arc de Triomphe, or also Les Palais des Tuileries, les Champs-Elysées decreased dramatically the number of tourists. From November 23 to 27, according to the MKG Consulting Observatory – OlaKala Destination, there have already been between 20,000 and 25,000 overnight stays canceled for the whole of December.

All these elements have huge impacts on the economy. On December 10, the Minister of the Economy linked the movement of Yellow Vests and the decline of growth, citing a decrease of 0.1-point growth of our national wealth.

On December 10, the national bank “Banque de France” announced that, it divided by two the French Gross Domestic Product growth rate it forecasts according to Yellow Jacket movement.

We could see an increase in business failures early next year, not only small traders but also larger distributors.

This type of event tends to accelerate the structural change of consumers towards the Internet sites. 41,000 employees were placed in partial activity or unemployed because of the closure of businesses.

And finally, the movement has several impacts in other economic sectors: the decline in turnover is estimates of 15% to 25% in supermarkets, 20% to 40% in the retail trade, and from 20% to 50% in food service.

Financial aspect: CAC 40 affected

The CAC 40 is a benchmark French stock market index. The index represents a capitalization-weighted measure of the 40 most significant values among the 100 highest market caps on the Euronext Paris. These values correspond to the most rentable financial French companies like: Airbus, BNP Paribas, Carrefour, LVMH. The stock market place, called “Bourse de Paris” is in the street quarter of “La Défense” in Paris.

The Yellow Vests rioted with strong hostility in “La Défense” street towards Chief Executive Officers of CAC 40 enterprises. This violent manifestation has forced some executives to move temporally to another European stock market place.

The CAC40 reduced its earnings penalized by Vinci (-3.1%), Carrefour (-3.3%) or AccorHotels (-1.5%) : three values victims of fears related to the national protest movement of Yellow Vests.

At the “Bourse de Paris”, the shares of the incumbent operators (EDF and Engie), which supply electricity and gas to regulated tariffs, fell by 7% and 2.9% respectively between 4 and 10 December following the raise of the petrol price’.

For the supermarket sector : Carrefour shares lost 13% in one month and Casino 4%.

French government bondholders now require 45 basis points more compensation than a 10-year Bund (first time in the history of my state).

III-Economic and financial consequences at the international scale Economic aspect:

Before Yellow Jackets

France had always been a model of diplomacy & welfare state. The election of Mr. Macron in may 2017 attracted many foreign companies to settle its businesses in France, closed to borderlands and reinforced international relations with our partners (Germany, Spain, USA). Our top 10 partners, which account for two thirds of our trade (67%), remain mostly European countries and continue to be so. Germany retains both its first position, its weight in our trade, which has decreased very little since 2012 (from 17.2% to 16.9% in 2016) and its gap with our other partners.

Moreover, China even accepted to buy an incredible number of French public debts thanks to a secure political climate at the end of 2017. This operation is also a strong wish to implant Chinese enterprises in France and to control economic decisions of the French government (if you control public debts of a country then you control the domestic government).

But, following to the Yellow Vests riot, all these plans have been completely modified.

Yellow Vets impact

For the rest of the world, Yellow Jacket movement constitutes the 2nd French revolution. This national attraction made many discussions in other countries about the social and economic stability for my nation. In Europe as in the United States, the media once again put the “yellow vests” on the front page. The image of Macron, so far very favorable, is degraded. And we all know that Chief Executive Officers of giant groups take very close attention to medias and social stability of a country to implement their companies there.

The manifestations in Bordeaux have strongly scared the giant Japanese Toray Carbon Fibers based in the city. Actually, the group wants to move from other European country.

Furthermore, at the end of 2018, the Spanish enterprise MECALUX group (nb 2 in European logistics) had for project to create a big subsidiary in France. But this move was canceled according to an insecure atmosphere in my state.

And this kind of example are numerous…

Financial impact:

The street quarter of “La Défense » in Paris is the second financial place in Europe. The first rank is detained by “The City”, famous place of London. With the Brexit treaty, many big financial companies and credit rating agencies based on The City want to move from another attractive place.

La Défense was the first choice of many of them. Macron created attractive fiscal conditions, the street was redesigned to receive these new companies. By the way, all the conditions were perfect for this new implantation of financial enterprises in Paris.

But, like always, the Yellow Jacket movement had scared financial enterprises based in London to move from Paris.

At the moment, Italy is probably the new desire of the financial companies.

Finally, some foreign investments of USA & China in favor of France were cancelled. Walmart & Chinese Petroleum wanted to finance new operations (Walmart subsidiaries in Paris, petrol extraction in the middle region of France). All of them are remove to new project because of Yellow Vest movement.

CONCLUSION:

“Gilets jaunes” put the mess in my country. Now, I am still in an inexplicable situation. WHY MY COUNTRY MAKES STUPID THINGS WHEN EVERYTHING GOES WELL… Why?

Maybe because with have too much things, too much safety.

 Maybe because we are spoiled child. But Yellow Jackets are not the only

 

 

Title

Carl Lagerfeld and some guest blogging from Emilien Chalancon, my student

 

Editorial

This time, instead of publishing my own train of thought, I am publishing the work of my student, CHALANCON Emilien, from Université Jean Monnet, Saint-Etienne, France (Department : Business and Administration, IUT Saint-Etienne). This is an essay prepared for a course in International Economic Relations, and devoted to the phenomenon of the so-called Yellow Jacket Movement. Read more at https://discoversocialsciences.com

 

Tags

Yellow vests movement, student,    

 

Rummaging inside Tesla: my latest exam in Microeconomics

 

My editorial on You Tube

 

One more educational update on my blog. This time, it is the interpretation of exam in microeconomics, which took place on February 1st, 2019, in two distinct majors of studies, i.e. International Relations, and Management. First, right below, I am presenting the contents of the exam sheet, such as it was distributed to students. Then, further below, I develop an interpretation of possible answers to the questions asked. One preliminary remark is due: the entire exam refers to Tesla Inc. as business case. In my classes of Microeconomics, as well as in those of Management, I usually base the whole semester of teaching on 4 – 6 comprehensive business cases. This time, during the winter semester 2018/2019, one of those cases was Tesla, and the main source material was Tesla’s Annual Report for 2017. The students who attended this precise exam were notified one week earlier that Tesla was the case to revise.

This said, let’s rock. Here comes the exam sheet:

 

Exam in Microeconomics February 1st, 2019

 

Below, you will find a table with selected financial data of Tesla Inc. Use that data, and your knowledge as regards the business model of this firm, to answer the two open questions below the table. Your answer to each of the questions will be graded on a scale from 0 to 3 points. No answer at all, or major mistakes, give you 0 points. Short descriptive answer, not supported logically with calculations, gives 1 point. Elaborate explanation, logically supported with calculations, gives 2 or 3 points, depending on the exhaustiveness of your answer. Points translate into your overall grade as follows: 6 points – 5,0 (very good); 5 points – 4,5 (+good); 4 points – 4,0 (good); 3 points – 3,5 (+pass); 2 points – 3,0 (pass); 0 ÷ 1 points – 2,0 (fail). 

 

 

Values in thousands of USD
Revenues 2017 2016 2015
Automotive sales    8 534 752       5 589 007       3 431 587    
Automotive leasing    1 106 548         761 759         309 386    
Energy generation and storage    1 116 266         181 394          14 477    
Services and other    1 001 185         467 972         290 575    
Total revenues   11 758 751       7 000 132       4 046 025    
Cost of revenues      
Automotive sales    6 724 480       4 268 087       2 639 926    
Automotive leasing      708 224         481 994         183 376    
Energy generation and storage      874 538         178 332          12 287    
Services and other    1 229 022         472 462         286 933    
Total cost of revenues    9 536 264       5 400 875       3 122 522    
Overall total gross profit    2 222 487       1 599 257         923 503    
Gross profit by segments      
Automotive sales 1 810 272 1 320 920 791 661
Automotive leasing 398 324 279 765 126 010
Energy generation and storage 241 728 3 062 2 190
Services and other (227 837) (4 490) 3 642
       
Operating expenses      
Research and development    1 378 073         834 408         717 900    
Selling, general and administrative    2 476 500       1 432 189         922 232    
Total operating expenses    3 854 573       2 266 597       1 640 132    
Loss from operations   (1 632 086)       (667 340)       (716 629)   

 

Question 1 (open): Which operating segment of Tesla generates the greatest value added in absolute terms? Which segment has the greatest margin of value added? How does it change over time? Are differences across operating segments greater or smaller than changes over time in each operating segment separately? How can you possibly explain those phenomena? Suggestion: refer to the theory of Marshallian equilibrium vs the theory of monopoly.

 

Question 2 (open): Calculate the marginal cost of revenue from 2015 to 2017 (i.e. ∆ cost of revenue / ∆ revenue), for the whole business of Tesla, and for each operating segment separately. Use those calculations explicitly to provide a balanced judgment on the following claim: “The ‘Energy and storage’ operating segment at Tesla presents the greatest opportunities for future profit”.  

 

Interpretation

 

Question 1 (open): Which operating segment of Tesla generates the greatest value added in absolute terms? Which segment has the greatest margin of value added? How does it change over time? Are differences across operating segments greater or smaller than changes over time in each operating segment separately? How can you possibly explain those phenomena? Suggestion: refer to the theory of Marshallian equilibrium vs the theory of monopoly.

 

The answer to that question starts with the correct understanding of categories in the source table. Value added can be approximated as gross profit. The latter is the difference between revenues and variable cost, thus between the selling price, and the price of key intermediate goods. This was one of the first theoretical explanations the students were supposed do start their answer with. As I keep repeating in my classes, good science starts with communicable, empirical observation, and thus you need to say specifically how the facts at hand correspond to the theoretical distinctions we hold.

 

As I could see from some of the exam papers that some of my students handed me back, this was the first checkpoint for the understanding of the business model of Tesla. The expression ‘operating segment’ refers to the following four categories from the initial table: automotive sales, automotive leasing, energy generation and storage, and services and other. To my sincere surprise, some of my students thought that component categories of operational costs, namely ‘Research and development’, and ‘Selling, general and administrative’ were those operational segments to study. If, in an exam paper, I saw someone calculating laboriously some kind of margin for those two, I had no other solution but marking the answer with a remark ‘Demonstrable lack of understanding regarding the business model of Tesla’, and that was one of those major mistakes, which disqualified the answer to Question 1, and gave 0 points.

 

In a next step, i.e. after matching the concept of value added with the category of gross profit, and explaining why they do so, students had to calculate the margin of value added. Of course, we are talking the margin of gross profit, or: ‘Gross Profit / Revenues’. Here below, I am presenting a table with the margin of gross profit at Tesla Inc.

 

 

Margin of gross profit 2017 2016 2015
Overall 18,9% 22,8% 22,8%
Automotive sales 21,2% 23,6% 23,1%
Automotive leasing 36,0% 36,7% 40,7%
Energy generation and storage 21,7% 1,7% 15,1%
Services and other -22,8% -1,0% 1,3%

 

There was a little analytical challenge in the phrasing of the question. When I ask whether  ‘differences across operating segments greater or smaller than changes over time in each operating segment separately‘, it is essentially a test for analytical flexibility. The best expected approach that a student could have developed was to use coefficients, like gross margin for automotive sales in 2017 divided by that in 2015, and, alternatively, divided by the gross margin on energy generation and storage etc. Thus, what I expected the most in this part of the answer, was demonstrable understanding that changes over time could be compared to cross-sectional differences with the use of a universal, analytical tool, namely that of proportions expressed as coefficients, like ‘A / B’.

As this particular angle of approach involved a lot of calculations (students could use calculators or smartphones in that exam), one was welcome to take some shortcuts based on empirical observation. Students could write, for example, that ‘The greatest gross profit in absolute terms is generated on automotive sales, thus is seems logical to compare the margin of value added in this segment with other segments…’. Something in those lines. This type of answer gave a clear indication of demonstrable understanding as regards the source data.

As for the theoretical interpretation of those numbers, I openly suggested my students to refer to the theory of Marshallian equilibrium vs the theory of monopoly. Here is how it goes. The margin of value added has two interpretations as regards the market structure. Value added can be what the supplier charges his customers, just because they are willing to accept it, and this is the monopolistic view. As the Austrian school of economics used to state, any market is a monopoly before being a competitive structure. It means that any relations a business can develop with its customers is, first of all, a one on one relation. In most businesses there is at least a small window of price, within which the supplier can charge their customers whatever he wants, and still stay in balance with demand. In clearly monopolistic markets that window can be quite wide.

On the other hand, value added is what the exogenous market equilibriums allow a firm to gain as a margin between the market of their final goods, and that of intermediate goods. This is value added understood as price constraint. Below, I present those two ideas graphically, and I expected my students to force their pens into drawing something similar.

 

Question 2 (open): Calculate the marginal cost of revenue from 2015 to 2017 (i.e. ∆ cost of revenue / ∆ revenue), for the whole business of Tesla, and for each operating segment separately. Use those calculations explicitly to provide a balanced judgment on the following claim: “The ‘Energy and storage’ operating segment at Tesla presents the greatest opportunities for future profit”.  

 

As I reviewed those exam papers, I could see that the concept of marginal change is enormously hard to grasp. It is a pity, as: a) the whole teaching of calculus, at high school, is essentially about marginal change b) the concept of marginal change is one of the theoretical pillars of modern science in general, and it comes straight from grandpa Isaac Newton.

Anyway, what we need, in the first place, is the marginal cost of revenue, from 2015 to 2017, calculated as ‘∆ cost of revenue / ∆ revenue’. The ∆ is, in this case, the difference between values reported in 2017, and those from 2015. The marginal cost of revenue is simply the cost of having one more thousand of dollars in revenue. The corresponding values of marginal cost are given in the table below.

 

Operating segment at Tesla Inc. Marginal cost of revenue from 2015 through 2017
Overall                             0,83
Automotive sales                             0,80
Automotive leasing                             0,66
Energy generation and storage                             0,78
Services and other                             1,33

 

Most of the students who took this exam, on the 1st of February, failed to address the claim phrased in the question, and it was mostly because they apparently did not understand what is the meaning of what they have calculated. Many had those numbers right, although some were overly zealous and calculated the marginal cost for two windows in time separately: 2015 – 2016, and then 2016 – 2017. I asked specifically to jump from 2015 straight into 2017. Still, the real struggle was the unit of measurement. I saw many papers, whose authors transformed those numbers – correctly calculated – into percentages. Now, look people. In the source table, you have data in thousands of dollars, right? A delta of $000 is given in $000, right? A coefficient made of two such deltas is still in $000. Those numbers mean that if you want to have one more thousand of them US dollars in revenues, at Tesla Inc., you need to spend $830 in cost of revenue, and correspondingly for particular operating segments.

Thus, when anyone wrote those marginal values as percentages, I was very sorry to give that answer a mention ‘Demonstrable lack of understanding regarding the concept of marginal cost’.

When considering the marginal cost of revenue as an estimation of future profits, the lower it is, the greater profit we can generate. With a given price, the lower the cost, the greater the profit margin. The operating segment labelled ‘Energy generation and storage’ doesn’t look bad at all, in that respect, certainly better than them ‘Services and other’, still it is the segment of ‘Automotive leasing’ that yields the lowest marginal cost of revenues. Thus, the claim “The ‘Energy and storage’ operating segment at Tesla presents the greatest opportunities for future profit” is false, as seen from this perspective.

I am consistently delivering good, almost new science to my readers, and love doing it, and I am working on crowdfunding this activity of mine. As we talk business plans, I remind you that you can download, from the library of my blog, the business plan I prepared for my semi-scientific project Befund  (and you can access the French version as well). You can also get a free e-copy of my book ‘Capitalism and Political Power’ You can support my research by donating directly, any amount you consider appropriate, to my PayPal account. You can also consider going to my Patreon page and become my patron. If you decide so, I will be grateful for suggesting me two things that Patreon suggests me to suggest you. Firstly, what kind of reward would you expect in exchange of supporting me? Secondly, what kind of phases would you like to see in the development of my research, and of the corresponding educational tools?

 

De la jugeotte artificielle

Mon éditorial sur You Tube

 

J’essaie de trouver des points communs entre ma recherche sur le marché de l’énergie et sur le concept d’entreprise que j’ai baptisé EneFin , d’une part, et le contenu éducatif d’autre part. La session d’examens, celle d’hiver, approche et je veux donner à mes étudiants un peu de contenu utile, tout en restant dans le flot de ma recherche.

Ledit flot de recherche a l’air comme un tout petit peu plus pressant, donc je cède. Je suis en train de faire un petit voyage dans le royaume de l’intelligence artificielle, afin de cueillir la fleur de sagesse qui me permettra de comprendre le phénomène d’intelligence collective chez nous, les êtres humains, ainsi que la déclinaison spécifique de cette intelligence collective dans le domaine de l’énergie. Je prends un petit détour sur ce chemin pour réfléchir, une fois de plus, sur le sujet des villes intelligentes. L’un des phénomènes les plus marqués dans la transition vers les énergies renouvelables est le rôle des villes. Les communautés urbaines deviennent des joueurs actifs dans cette transition énergétique et c’est une activité qui, je pense, est sans précèdent depuis le début du Moyen Age. Les villes font des transitions technologiques plus audacieuses que les grandes sociétés multinationales.

Je veux comprendre ce phénomène. J’approche la gestion, y compris la gestion d’une communauté urbaine, comme une manifestation d’intelligence collective. Pour comprendre le phénomène d’intelligence collective, j’apprends les rudiments d’intelligence artificielle (voir « Ce petit train-train des petits signaux locaux d’inquiétude » par exemple). C’est le sentier de recherche qui se définit comme intelligence artificielle générale. Tu veux comprendre comment marche une bagnole, je veux dire comprendre à fond ? Eh bien, bâtis-en une. Même chose pour la jugeotte : si je veux comprendre comment ça marche, être intelligent, je peux gagner en compréhension en essayant de faire une jugeotte artificielle.

Mon premier pas de compréhension réfère aux soi-disant perceptrons, donc aux réseaux neuronaux qui imitent aussi étroitement que possible le fonctionnement des neurones réels. Un perceptron est une structure logique qui produit un grand nombre d’instances locales d’elle-même et en faisant de la sorte, elle produit des petites erreurs (adaptations imparfaites) locales qui fournissent des informations pour apprentissage futur. Après un grand nombre d’itérations, un perceptron produit un modèle de réalité qui, à son tour, permet de prendre des décisions rationnelles.

Je viens d’utiliser le concept de perceptron pour inventer un mécanisme financier pour stimuler le développement intelligent d’une communauté urbaine. Bon, je sais, il faut que j’explique d’abord le concept de développement intelligent tel que je le comprends. Eh bien, c’est un développement façon perceptron : au lieu de créer et mettre en place une stratégie parfaitement cohérente, le genre qui a l’air bien dans une présentation Power Point, je développe une structure qui permet de mettre en place plusieurs solutions locales dont chacune est une expérimentation en soi. Il y a des trucs, dans le développement urbain, où quoi qu’on fasse, on avance à tâtons. C’est particulièrement vrai pour l’interaction entre une technologie et une population. Il y a ce phénomène désigné comme « déterminisme technologique ». Une technologie nouvelle et une structure sociale sont comme deux nuages : elles s’enveloppent en s’interpénètrent mutuellement. Lorsque nous introduisons une technologie nouvelle comme une infrastructure urbaine, la façon exacte dont ça marche est très dure à prédire et la même façon exacte a une importance capitale pour la viabilité économique de cette infrastructure. Au lieu d’essayer de le prédire nous pouvons expérimenter avec. Un mécanisme de développement intelligent est une structure capable de produire plusieurs petites expérimentations locales, par exemple sous forme d’un grand nombre d’entreprises startups relativement petites qui vont inévitablement commettre des erreurs et apprendre sur la base de ces erreurs.

Au lieu donc de créer une grande société infrastructurelle urbaine, on peut créer un mécanisme financier qui facilite la création des petites entreprises façon startup.  Ça marche pour des technologies aisément subdivisées en des projets locaux, par exemple des réseaux électriques intelligents de basse ou moyenne tension. En revanche, l’idée est hautement discutable pour des technologies qui requièrent beaucoup de coordination sur un territoire étendu, comme des réseaux de transport urbain. Nous pouvons aisément expérimenter avec des systèmes locaux de fourniture d’énergie à partir des turbines à vent ou à l’eau, pendant qu’il serait risqué de créer plusieurs petites startups locales pour un nouveau réseau ferroviaire. Toutefois, risqué ne veut pas dire impossible. C’est précisément là que réside tout le panache de développement intelligent : une expérimentation bien sécurisée côté risque peut apporter des solutions dont nous n’avions même pas soupçonné l’existence.

Alors, la finance. Les conseils municipaux ont fréquemment dans leurs budgets une catégorie de dépenses appelée « développement » ou bien « promotion et communication du développement » etc. Vous comprenez : c’est du pognon qu’on peut dépenser sur des trucs des plus fous, comme des stylos fluorescents avec le logotype de la ville imprimé dessus et encore, ça, c’est du timide et du pondéré en termes de la communication autour du développement.

Mon idée est de prendre comme 50% de ce fonds de développement et les investir dans le capital social d’un fonds strictement dit, que j’appelle provisoirement « le fonds de développement intelligent ». Si je fais un acronyme direct de cette appellation, ça fait FDI, donc le même qui désigne investissements étrangers directs en anglais (Foreign Direct Investment), je vais donc vers un acronyme syllabique : FODIN. Le FODIN est un fonds d’assurance : il garantit le capital social des startups locales en échange des primes d’assurance payées par celles-ci.

Assumons – conformément à ce qu’annonce le rapport intitulé « The 2017 Global Startup Ecosystem Report » – que le capital social initial d’une startup est égal, en moyenne, à €80 000 et que le coefficient de mortalité des startups est d’à peu près 30% sur les deux premières années d’exercice. Dans un ensemble de 100 startups il est donc pratiquement certain que 30 de parmi elles déposeront leurs bilans durant les deux premières années d’activité, ce qui veut dire 30 * €80 000 = €2 400 000 de capital social potentiellement perdu. Si je disperse cette perte agrégée sur l’ensemble entier de 100 startups, ceci fait €24 000 de prime d’assurance faillite qu’une startup paie au FODIN, en échange d’une garantie sur 100% du capital social engagé dans l’affaire.

Voilà donc un FODIN local qui dispose de €5 000 000 et qui engage à peu près 50% de cette somme dans les garanties pour les startups, les autres 50% demeurant libre de toute créance, conditionnelle ou pas. Tout ce capital social est investi en des actifs financiers à bas risque, genre obligations souveraines. Chaque année, ce FODIN paie entre €1 200 000 et €2 400 000 en dommages et intérêts aux actionnaires des startups en faillite (le taux de mortalité de 30% c’est sur deux ans), et reçoit €2 400 000 en primes d’assurance faillite. De tout en tout, notre petit FODIN local peut accumuler du capital à un taux d’à peu près 9% par an. En nombres absolus, 9% * €5 000 000 = €450 000 de plus, chaque année, ce qui veut dire, à son tour, €450 000 / €80 000 = 5 ÷ 6 startups locales de plus, à assurer contre la faillite.

Si nous transformons une dépense budgétaire locale en un fonds financier censé de réduire le risque d’expérimentation avec des business locaux, on peut produire un mécanisme de développement intelligent et ce mécanisme est capable de gérer son propre développement intelligent. ‘ttendez, c’est pas tout. L’autre partie de ce tout est une plateforme de financement participatif type « crowdfunding », où les startups locales, aussi bien que le FODIN, peuvent chercher du capital. Comme je passe en revue des différentes plateformes de crowdfunding, elles ont une faiblesse majeure : les titres participatifs qui y circulent ont peu de liquidité. Dans un réflexe tout à fait naturel, les participants du crowdfunding essaient de contourner les régulations légales en ce qui concerne la traite des valeurs financières, mais il y a un prix à payer pour cette absence d’entrave légale et ce prix est une entrave financière. L’histoire des marchés financiers est très claire sur ce point : si nous voulons un marché financier de prendre vraiment son envol, il faut que les droits et créances financières vendues sur ce marché soient aussi négociables que possible. Lorsqu’une participation type crowdfunding ne se traduit pas en un actif négociable, donc lorsque je ne peux pas la vendre quand je veux, ça bloque énormément.

Moi, je propose donc de liquéfier quelque peu cette plateforme de crowdfunding avec une cryptomonnaie interne. L’entité gérante de la plateforme émet une cryptomonnaie, suivant un algorithme plus ou moins déterministe du type « preuve d’enjeu » (« proof of stake » en anglais), donc sans compétition computationnelle au niveau de l’extraction. Lorsque j’investis via cette plateforme, j’ai le choix entre l’achat direct des titres participatifs d’entreprises où bien l’achat d’unités de cette cryptomonnaie d’abord, et l’échange de ces valeurs virtuelles contres des titres de participation ensuite. La cryptomonnaie en tant que telle est librement négociable à l’intérieur de la plateforme de crowdfunding, y compris des rachats occasionnels par l’entité émettrice elle-même.

On peut pomper cette liquidité même plus si on introduit des soi-disant « fixings » du taux d’échange de la cryptomonnaie interne en des valeurs financières « officielles » : euros, dollars etc. Les fixings apportent de la confiance, et la possibilité de négocier à l’intérieur du système, sans échanger la cryptomonnaie en quoi que ce soit d’autre, offrent la possibilité d’accomplir plusieurs transactions avec relativement peu d’argent « réel ».

Voilà donc comment l’étude des réseaux neuronaux du type perceptron conduit à formuler une nouvelle approche de stratégie de développement socio-économique. Au lieu de formuler un plan d’action traditionnel, nous créons des conditions pour l’expérimentation orientée sur les objectifs stratégiques généraux ainsi que des mécanismes de réduction de risque lié à chaque expérience particulière. Je suis en train de réfléchir sur l’utilisation de cette approche façon « intelligence artificielle » à la gestion du risque en général. Si je produis des petites erreurs locales de façon délibérée et contrôlée, je peux apprendre plus vite et donc m’adapter plus vite aux conditions changeantes de mon environnement, ce qui me permet d’éviter de façon plus adroite des grosses erreurs incontrôlées.

Un ami m’a demandé récemment si je suis partant pour co-écrire un livre sur la gestion des soins médicaux. Mon chapitre à moi serait dévoué à la gestion du risque opérationnel dans le secteur de la santé. Le risque opérationnel en général est le type de risque liée à l’occurrence d’erreurs humaines, actes de malveillance ou bien des défaillances systémiques. Je suis tenté de développer une approche façon perceptron de ce sujet particulier. « Je suis tenté » veut dire que j’hésite. Le risque opérationnel dans les soins médicaux c’est dans une large mesure du risque clinique, donc des situations où la vie et le bien-être des patients sont en jeu. Expérimentation délibérée et contrôlée à ce niveau-là ? Hmouais… Peut-être. C’est du terrain glissant, ça. Intéressant, aussi. Il faut que je rumine ça un peu plus longtemps.

L’apprentissage à travers l’erreur délibérée est l’une des fonctions neuronales essentielles, possibles à simuler avec les réseaux neuronaux artificiels. Il y en a une autre, celle de signification, qui, à son tour, repose sur la généralisation et la distinction. Je vois un truc brun, rugueux, qui comme saillit du sol et ça a comme une coiffure branchée et feuillie sur l’extrémité supérieure. J’en vois d’autres, un peu similaires. Ah, oui, c’est ce qu’on appelle « un arbre ». Lorsqu’il y en a beaucoup dans un endroit, il peut s’avérer utile de les grouper sous la catégorie de « bois » ou « forêt » et en même temps ça peut profiter de les distinguer en saules, peupliers, pins etc. Si vous venez de conclure que le langage est une manifestation de généralisation et distinction, vous avez deviné juste. Chaque mot que nous utilisons en est un exemple.

Voilà qu’un créneau de recherche émerge, à ce sujet précis, un créneau qui renverse beaucoup de théories acquises et qui rend une certaine catégorie de réseaux neuronaux, ceux appelés « apprentissage profond » (« deep learning » en anglais) particulièrement intéressants. Les théories acquises sont celles qui considèrent la signification sémantique comme une fonction strictement supérieure de notre système nerveux. C’est tout dans le lobe frontal, l’aristocrate sophistiqué de notre cervelle, c’est tout culturel, comme imprimé sur la peau de la bête naturelle qui s’est accroupie par-dessous.

Bien sûr, une bonne question s’impose : qu’est-ce que je présente comme de la science la plus récente ? Rien que dans le service Science Direct, sous le mot clé « Economics », l’année 2017 avait apportée 27 551 articles nouveaux, soit plus de 75 articles par jour. En 2018, ça a même accéléré et jusqu’à présent (15 Octobre 2018) 28 820 articles sont parus, donc presque 107 par jour. J’approche le même dépositoire sous un angle différent, avec le mot clé behavioriste à la mode : « social brain ». Ça donne 16 077 articles durant les 9 mois de l’année 2018, plus de 89 par jour. Voilà donc un seul dépositoire scientifique – Science Direct, donc essentiellement que des journaux de la maison d’édition Elsevier – et juste deux mots clés. Bien généraux, ces deux-là, mais juste deux quand même.

Pas question que je lise tout ça en temps réel, il faut que je trie. Je me concentre sur mes petites obsessions : le behaviorisme économique, l’intelligence collective, les systèmes monétaires et l’innovation. J’essaie de cerner les découvertes les plus intéressantes et mon choix subjectif tombe sur deux articles à propos des hiérarchies sociales et de la façon dont nous les percevons : « Know Your Place: Neural Processing of Social Hierarchy in Humans » par Caroline F. Zink et al. et « The Emergence and Representation of Knowledge about Social and Nonsocial Hierarchies » par Dharshan Kumaran et al. .

Je me suis intéressé à ces articles précis puisqu’ils mettent en question, bien qu’indirectement, les assomptions fondamentales de l’économie classique, ainsi qu’une bonne part de la théorie des jeux et il ne faut pas oublier la sociologie. Alors ces assomptions fondamentales disent que les êtres humains forment, tout d’abord, des réseaux de coopération et d’échange, et ce n’est qu’ensuite – et l’ensuite, il est tout à fait substantiel – que des hiérarchies sociales prennent forme. Le père fondateur de ma discipline, Adam Smith , présente une vision de changement social où un marché relativement grand, doté en plus des voies navigables abondamment accessibles, permet la spécialisation (division de travail) et il en résulte développement d’échange économique. Une fois l’échange établi, les villes peuvent se former, qui deviennent un moteur de même plus d’échange et tout ça, ça crée une assiette fiscale qui à son tour permet un souverain d’être un souverain, de se trouver des chevaliers de table – ronde, de préférence – et après, ça va droit vers l’état moderne.

En d’autres mots, l’approche classique des sciences sociales assume que les hiérarchies sociales sont une superstructure bâtie sur la base des réseaux préexistants de coopération et d’échange. Les hiérarchies, dans cette approche, sont donc des créations culturelles, basées sur tout un tas d’idées établies et l’établissement desdites idées se fait largement par le travail de main d’œuvre qualifiée à utiliser des armes.

Ces deux articles que je viens de citer convergent tous vers un point de vue opposé : la perception de la hiérarchie, dans les êtres humains, est quelque chose de primaire et naturel. Bien sûr, les hiérarchies sociales complexes sont de fabrication culturelle, mais leur construction a une base neurologique apparemment plus primaire que les relations d’échange et de coopération.

Je me permettrai de développer un peu sur cette recherche neurologique. Je commence par l’article « Know Your Place: Neural Processing of Social Hierarchy in Humans » par Caroline F. Zink et al. Dans une expérience de laboratoire, les participants jouaient un jeu interactif, où ils devaient exécuter des tâches spécifiques pour une récompense monétaire et ils voyaient leur résultat comparé avec celui d’un autre joueur. Les commentaires des animateurs de l’expérience ainsi que la façon de rapporter les résultats du jeu créaient un environnement fortement compétitif et renforçaient l’impression que lesdits résultats créaient une hiérarchie. Plus élevé est ton score, plus haut tu te trouves dans la hiérarchie : ce genre-là. Cet « autre joueur » était fictif mais au moment même du jeu les participants ne le savaient pas : ils étaient persuadés qu’ils rivalisent avec une personne réelle. La perception qu’ils avaient de leur position hiérarchique basée sur la performance au jeu était donc délibérément programmée par les animateurs.

Deux scénarios du jeu étaient mis en place. Dans le premier, la hiérarchie crée dans les tours successifs du jeu était stable : le feedback que chaque participant recevait à propos de sa performance était cohérent entre les tours successifs. Dans le deuxième, ça changeait. Après l’expérience, les participants répondaient à un questionnaire où ils devaient exprimer, entre autres, leur opinion sur les joueurs qu’ils percevaient respectivement comme supérieurs, égaux ou bien inférieurs à eux-mêmes. L’activité de leur cerveau était observée par le moyen de la résonnance magnétique fonctionnelle.

En général, l’activation neurale du cerveau était la plus importante dans la perception d’un joueur supérieur dans une hiérarchie instable, suivie par une excitation légèrement moindre lorsque les participants se référaient à un joueur perçu comme supérieur dans une hiérarchie stable, et ensuit dans la situation de référence à un joueur inférieur dans la hiérarchie stable. Se référer à un joueur perçu comme inférieur dans une hiérarchie stable ne provoquait apparemment pas d’excitation cérébrale particulière. Le résultat le plus surprenant est cependant la géographie exacte de cette excitation. Bien sûr, le cortex frontal et le préfrontal : c’est là que toute notre culture réside. Le cortex occipital, ça s’excitait aussi, mais là non plus il n’y a pas de surprise : c’est la perception visuelle. Seulement, profondément en-dessous du Monsieur Cortex, il y a un humble laboureur neural appelé « ventrum striatum », responsable, entre autres de la perception olfactive, de la cicatrisation des plaies, des fonctions motrices etc. Chaque fois qu’il faut du jus neural, donc du neurotransmetteur, Monsieur Cortex passe la commande à ventrum striatum. C’est comme une usine à hormones.

Pourquoi c’est tellement important ? Eh bien, imaginez que dans un meeting d’affaires, tous vos muscles se mettent en alerte chaque fois que vous percevez quelqu’un comme gagnant de supériorité hiérarchique sur vous. Ça n’arrive pas ? Eh ben si, justement, ça arrive au niveau neural sans que nous nous en rendions compte. Avant que nous ayons le temps de cogiter consciemment toutes les subtilités culturelles des relations hiérarchiques, une perception très primaire du type « ce mec-là, il est supérieur à moi » survient. Dans cet article par Caroline F. Zink et al. il y a une série des graphes intéressants (page 275). Ils montrent la magnitude d’excitation neurale dans chaque partie du cerveau engagée dans la réaction générale. L’excitation la plus forte survient dans le cortex occipital (perception visuelle) et dans le ventru, striatum (usine à hormones, perception olfactive). L’excitation du cortex frontal et préfrontal est un peu moins prononcée. C’est aussi dans le cortex occipital et dans le ventrum striatum que la différence à observer dans la magnitude d’excitation, entre la perception de supériorité hiérarchique et celle d’infériorité était la plus visible.

Quelle connexion entre tout ce bazar neurophysiologique et les réseaux artificiels d’apprentissage profond ? Ces réseaux-là prennent le mécanisme général du perceptron, que j’avais déjà survolé un peu plus tôt, et y ajoutent la fonction de généralisation et distinction. La formalisation la plus simple de cette fonction est celle de distance Euclidienne. Chaque point de données est représenté avec deux coordonnées, et chaque paire des points se caractérise par une distance calculée façon Pythagore : A -> B = [(xB – xA)2 + (yB – yA)2]0,5. Les points de données sont groupés sur la base de leur distance Euclidienne respective, en des grappes distinctes, et ces grappes sont la base empirique de généralisation et distinction.

La distance Euclidienne peut être remplacée par la fonction Gaussienne mais la vraie sophistication est à trouver dans l’application du noyau mathématique.  En général, chaque collection des données numériques peut être soit représentée directement comme une matrice soit transformée en telle et cette matrice peut être, à son tour, représentée avec un nombre unique, un noyau. Les déterminants des matrices, que certains de parmi nous ont étudié à l’école, sont un exemple des noyaux algébriques.

Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ?