What are the practical outcomes of those hypotheses being true or false?

 

My editorial on You Tube

 

This is one of those moments when I need to reassess what the hell I am doing. Scientifically, I mean. Of course, it is good to reassess things existentially, too, every now and then, but for the moment I am limiting myself to science. Simpler and safer than life in general. Anyway, I have a financial scheme in mind, where local crowdfunding platforms serve to support the development of local suppliers in renewable energies. The scheme is based on the observable difference between prices of electricity for small users (higher), and those reserved to industrial scale users (lower). I wonder if small consumers would be ready to pay the normal, relatively higher price in exchange of a package made of: a) electricity and b) shares in the equity of its suppliers.

I have a general, methodological hypothesis in mind, which I have been trying to develop over the last 2 years or so: collective intelligence. I hypothesise that collective behaviour observable in markets can be studied as a manifestation of collective intelligence. The purpose is to go beyond optimization and to define, with scientific rigour, what are the alternative, essentially equiprobable paths of change that a complex market can take. I think such an approach is useful when I am dealing with an economic model with a lot of internal correlation between variables, and that correlation can be so strong that it turns into those variables basically looping on each other. In such a situation, distinguishing independent variables from the dependent ones becomes bloody hard, and methodologically doubtful.

On the grounds of literature, and my own experimentation, I have defined three essential traits of such collective intelligence: a) distinction between structure and instance b) capacity to accumulate experience, and c) capacity to pass between different levels of freedom in social cohesion. I am using an artificial neural network, a multi-layer perceptron, in order to simulate such collectively intelligent behaviour.

The distinction between structure and instance means that we can devise something, make different instances of that something, each different by some small details, and experiment with those different instances in order to devise an even better something. When I make a mechanical clock, I am a clockmaker. When I am able to have a critical look at this clock, make many different versions of it – all based on the same structural connections between mechanical parts, but differing from each other by subtle details – and experiment with those multiple versions, I become a meta-clock-maker, i.e. someone who can advise clockmakers on how to make clocks. The capacity to distinguish between structures and their instances is one of the basic skills we need in life. Autistic people have a big problem in that department, as they are mostly on the instance side. To a severely autistic person, me in a blue jacket, and me in a brown jacket are two completely different people. Schizophrenic people are on the opposite end of the spectrum. To them, everything is one and the same structure, and they cannot cope with instances. Me in a blue jacket and me in a brown jacket are the same as my neighbour in a yellow jumper, and we all are instances of the same alien monster. I know you think I might be overstating, but my grandmother on the father’s side used to suffer from schizophrenia, and it was precisely that: to her, all strong smells were the manifestation of one and the same volatile poison sprayed in the air by THEM, and every person outside a circle of about 19 people closest to her was a member of THEM. Poor Jadwiga.

In economics, the distinction between structure and instance corresponds to the tension between markets and their underpinning institutions. Markets are fluid and changeable, they are like constant experimenting. Institutions give some gravitas and predictability to that experimenting. Institutions are structures, and markets are ritualized manners of multiplying and testing many alternative instances of those structures.

The capacity to accumulate experience means that as we experiment with different instances of different structures, we can store information we collect in the process, and use this information in some meaningful way. My great compatriot, Alfred Korzybski, in his general semantics, used to designate it as ‘the capacity to bind time’. The thing is not as obvious as one could think. A Nobel-prized mathematician, Reinhard Selten, coined up the concept of social games with imperfect recall (Harsanyi, Selten 1988[1]). He argued that as we, collective humans, accumulate and generalize experience about what the hell is going on, from time to time we shake off that big folder, and pick the pages endowed with the most meaning. All the remaining stuff, judged less useful on the moment, is somehow archived in culture, so as it basically stays there, but becomes much harder to access and utilise. The capacity to accumulate experience means largely the way of accumulating experience, and doing that from-time-to-time archiving. We can observe this basic distinction in everyday life. There are things that we learn sort of incrementally. When I learn to play piano – which I wish I was learning right now, cool stuff – I practice, I practice, I practice and… I accumulate learning from all those practices, and one day I give a concert, in a pub. Still, other things, I learn them sort of haphazardly. Relationships are a good example. I am with someone, one day I am mad at her, the other day I see her as the love of my life, then, again, she really gets on my nerves, and then I think I couldn’t live without her etc. Bit of a bumpy road, isn’t it? Yes, there is some incremental learning, but you become aware of it after like 25 years of conjoint life. Earlier on, you just need to suck ass and keep going.

There is an interesting theory in economics, labelled as « semi – martingale » (see for example: Malkiel, Fama 1970[2]). When we observe changes in stock prices, in a capital market, we tend to say they are random, but they are not. You can test it. If the price is really random, it should fan out according to the pattern of normal distribution. This is what we call a full martingale. Any real price you observe actually swings less broadly than normal distribution: this is a semi-martingale. Still, anyone with any experience in investment knows that prediction inside the semi-martingale is always burdened with a s**tload of error. When you observe stock prices over a long time, like 2 or 3 years, you can see a sequence of distinct semi-martingales. From September through December it swings inside one semi-martingale, then the Ghost of Past Christmases shakes it badly, people panic, and later it settles into another semi-martingale, slightly shifted from the preceding one, and here it goes, semi-martingaling for another dozen of weeks etc.

The central theoretical question in this economic theory, and a couple of others, spells: do we learn something durable through local shocks? Does a sequence of economic shocks, of whatever type, make a learning path similar to the incremental learning of piano playing? There are strong arguments in favour of both possible answers. If you get your face punched, over and over again, you must be a really dumb asshole not to learn anything from that. Still, there is that phenomenon called systemic homeostasis: many systems, social structures included, tend to fight for stability when shaken, and they are frequently successful. The memory of shocks and revolutions is frequently erased, and they are assumed to have never existed.

The issue of different levels in social cohesion refers to the so-called swarm theory (Stradner et al 2013[3]). This theory studies collective intelligence by reference to animals, which we know are intelligent just collectively. Bees, ants, hornets: all those beasts, when acting individually, as dumb as f**k. Still, when they gang up, they develop amazingly complex patterns of action. That’s not all. Those complex patterns of theirs fall into three categories, applicable to human behaviour as well: static coupling, dynamic correlated coupling, and dynamic random coupling.

When we coordinate by static coupling, we always do things together in the same way. These are recurrent rituals, without much room for change. Many legal rules, and institutions they form the basis of, are examples of static coupling. You want to put some equity-based securities in circulation? Good, you do this, and this, and this. You haven’t done the third this? Sorry, man, but you cannot call it a day yet. When we need to change the structure of what we do, we should somehow loosen that static coupling and try something new. We should dissolve the existing business, which is static coupling, and look for creating something new. When we do so, we can sort of stay in touch with our customary business partners, and after some circling and asking around we form a new business structure, involving people we clearly coordinate with. This is dynamic correlated coupling. Finally, we can decide to sail completely uncharted waters, and take our business concept to China, or to New Zealand, and try to work with completely different people. What we do, in such a case, is emitting some sort of business signal into the environment, and waiting for any response from whoever is interested. This is dynamic random coupling. Attracting random followers to a new You Tube channel is very much an example of the same.

At the level of social cohesion, we can be intelligent in two distinct ways. On the one hand, we can keep the given pattern of collective associations behaviour at the same level, i.e. one of the three I have just mentioned. We keep it ritualized and static, or somehow loose and dynamically correlated, or, finally, we take care of not ritualizing too much and keep it deliberately at the level of random associations. On the other hand, we can shift between different levels of cohesion. We take some institutions, we start experimenting with making them more flexible, at some point we possibly make it as free as possible, and we gain experience, which, in turn, allows us to create new institutions.

When applying the issue of social cohesion in collective intelligence to economic phenomena, we can use a little trick, to be found, for example, in de Vincenzo et al (2018[4]): we assume that quantitative economic variables, which we normally perceive as just numbers, are manifestations of distinct collective decisions. When I have the price of energy, let’s say, €0,17 per kilowatt hour, I consider it as the outcome of collective decision-making. At this point, it is useful to remember the fundamentals of intelligence. We perceive our own, individual decisions as outcomes of our independent thinking. We associate them with the fact of wanting something, and being apprehensive regarding something else etc. Still, neurologically, those decisions are outcomes of some neurons firing in a certain sequence. Same for economic variables, i.e. mostly prices and quantities: they are fruit of interactions between the members of a community. When I buy apples in the local marketplace, I just buy them for a certain price, and, if they look bad, I just don’t buy. This is not any form of purposeful influence upon the market. Still, when 10 000 people like me do the same, sort of ‘buy when price good, don’t when the apple is bruised’, a patterned process emerges. The resulting price of apples is the outcome of that process.

Social cohesion can be viewed as association between collective decisions, not just between individual actions. The resulting methodology is made, roughly speaking, of three steps. Step one: I put all the economic variables in my model over a common denominator (common scale of measurement). Step two: I calculate the relative cohesion between them with the general concept of a fitness function, which I can express, for example, as the Euclidean distance between local values of variables in question. Step three: I calculate the average of those Euclidean distances, and I calculate its reciprocal, like « 1/x ». This reciprocal is the direct measure of cohesion between decisions, i.e. the higher the value of this precise « 1/x », the more cohesion between different processes of economic decision-making.

Now, those of you with a sharp scientific edge could say now: “Wait a minute, doc. How do you know we are talking about different processes of decision making? Who do you know that variable X1 comes from a different process than variable X2?”. This is precisely my point. The swarm theory tells me that if I can observe changing a cohesion between those variables, I can reasonably hypothesise that their underlying decision-making processes are distinct. If, on the other hand, their mutual Euclidean distance stays the same, I hypothesise that they come from the same process.

Summing up, here is the general drift: I take an economic model and I formulate three hypotheses as for the occurrence of collective intelligence in that model. Hypothesis #1: different variables of the model come from different processes of collective decision-making.

Hypothesis #2: the economic system underlying the model has the capacity to learn as a collective intelligence, i.e. to durably increase or decrease the mutual cohesion between those processes. Hypothesis #3: collective learning in the presence of economic shocks is different from the instance of learning in the absence of such shocks.

They look nice, those hypotheses. Now, why the hell should anyone bother? I mean what are the practical outcomes of those hypotheses being true or false? In my experimental perceptron, I express the presence of economic shocks by using hyperbolic tangent as neural function of activation, whilst the absence of shocks (or the presence of countercyclical policies) is expressed with a sigmoid function. Those two yield very different processes of learning. Long story short, the sigmoid learns more, i.e. it accumulates more local errors (this more experimental material for learning), and it generates a steady trend towards lower a cohesion between variables (decisions). The hyperbolic tangent accumulates less experiential material (it learns less), and it is quite random in arriving to any tangible change in cohesion. The collective intelligence I mimicked with that perceptron looks like the kind of intelligence, which, when going through shocks, learns only the skill of returning to the initial position after shock: it does not create any lasting type of change. The latter happens only when my perceptron has a device to absorb and alleviate shocks, i.e. the sigmoid neural function.

When I have my perceptron explicitly feeding back that cohesion between variables (i.e. feeding back the fitness function considered as a local error), it learns less and changes less, but not necessarily goes through less shocks. When the perceptron does not care about feeding back the observable distance between variables, there is more learning and more change, but not more shocks. The overall fitness function of my perceptron changes over time The ‘over time’ depends on the kind of neural activation function I use. In the case of hyperbolic tangent, it is brutal change over a short time, eventually coming back to virtually the same point that it started from. In the hyperbolic tangent, the passage between various levels of association, according to the swarm theory, is super quick, but not really productive. In the sigmoid, it is definitely a steady trend of decreasing cohesion.

I want to know what the hell I am doing. I feel I have made a few steps towards that understanding, but getting to know what I am doing proves really hard.

I am consistently delivering good, almost new science to my readers, and love doing it, and I am working on crowdfunding this activity of mine. As we talk business plans, I remind you that you can download, from the library of my blog, the business plan I prepared for my semi-scientific project Befund  (and you can access the French version as well). You can also get a free e-copy of my book ‘Capitalism and Political Power’ You can support my research by donating directly, any amount you consider appropriate, to my PayPal account. You can also consider going to my Patreon page and become my patron. If you decide so, I will be grateful for suggesting me two things that Patreon suggests me to suggest you. Firstly, what kind of reward would you expect in exchange of supporting me? Secondly, what kind of phases would you like to see in the development of my research, and of the corresponding educational tools?

[1] Harsanyi, J. C., & Selten, R. (1988). A general theory of equilibrium selection in games. MIT Press Books, 1.

[2] Malkiel, B. G., & Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The journal of Finance, 25(2), 383-417.

[3] Stradner, J., Thenius, R., Zahadat, P., Hamann, H., Crailsheim, K., & Schmickl, T. (2013). Algorithmic requirements for swarm intelligence in differently coupled collective systems. Chaos, Solitons & Fractals, 50, 100-114.

[4] De Vincenzo, I., Massari, G. F., Giannoccaro, I., Carbone, G., & Grigolini, P. (2018). Mimicking the collective intelligence of human groups as an optimization tool for complex problems. Chaos, Solitons & Fractals, 110, 259-266.

One thought on “What are the practical outcomes of those hypotheses being true or false?

Leave a Reply