Woda, która spada szybko

Prowadzę mój dziennik badawczy w trzech językach: angielskim, francuskim i polskim. Snobizm? Jasne, pewnie tak. Jest jednak jeszcze coś. Zauważyłem, że kiedy przeskakuję z jednego języka na inny, to jakbym przetwarzał informacje w nieco inny sposób. Niby to samo, ale pod odrobinę odmiennym kątem. Angielski to międzynarodowy język naukowy. Francuski pomaga mi uzyskać dodatkową perspektywę na to, co piszę po angielsku. Polski jest moim językiem ojczystym. Chociażbym nie wiem jak dobrze władał innymi językami, mój mózg jest „zakodowany” po polsku jeżeli chodzi o podstawowe rozróżnienia semantyczne. Pisać po polsku, na blogu Discover Social Sciences, to dla mnie jak przejechać się rowerem po bulwarach wiślanych w moim rodzinnym Krakowie i ułożyć sobie w głowie kotłujące się w niej myśli.

Staram się ubrać w konkretne działania pomysł, który przyszedł mi do głowy ostatnio. Na razie opisywałem go po angielsku (np. w „The mind-blowing hydro”) oraz po francusku (np. „La marge opérationnelle de $1 539,60 par an par 1 kilowatt” ) i teraz pora na wersję polską. Na początek nazwa. Po angielsku nazwałem ten pomysł « Energy Ponds », ale po polsku nazwa „Stawy Energetyczne” brzmi głupio, nasuwając na myśl jeden z tych cudownych żeli na bolesność w łokciu czy w kolanie. Zacznę od opisu pomysłu, a potem spróbuję wymyślić polską nazwę. Chodzi o wodę. Cywilizacja europejska jest w dużej mierze oparta na tym, że w północnej Europie wykształciliśmy, mniej więcej na przełomie X i XI wieku n.e., wyjątkowo wydajny system produkcji żywności. Opierał się on i wydaje się opierać dalej na tym, że większość opadów atmosferycznych w ciągu roku otrzymywaliśmy w postaci śniegu w zimie, no a śnieg to wiadomo: zimą leży i topi się wiosną. Jak leży, to ugniata rzeczy pod spodem, a jak ugniata, to się termodynamika kłania: wysokie ciśnienie to prawie jak wysoka temperatura. No i te rzeczy pod śniegiem gniją sobie powoli, jak gniją to się jeszcze cieplej robi i się próchnica glebowa tworzy. Wiosną śnieg topi się wolno, woda z roztopów wsiąka powoli i głęboko w podłoże i się zasoby wodne akumulują. 

Teraz to się zmieniło. Coraz mniej wody spada w postaci śniegu, za to coraz więcej w postaci gwałtownych deszczów, no i coraz więcej paruje pod wpływem rosnącej temperatury. W efekcie mamy powodzie i susze, a ja mam okazję do małego przeglądziku literatury. Zdrobnienie „przeglądzik” nie istnieje w poprawnej polszczyźnie, ale myślę sobie: co tam, mogę mieć swój własny neologizm. Trafiłem na dwa ciekawe artykuły, jeżeli chodzi o ryzyko związane z powodziami w Europie: Alfieri et al. 2015[1] oraz Paprotny et al. (2018[2]). Ciekawe, dlatego że pokazują sposób działania inteligencji zbiorowej w naszym społeczeństwie. Ryzyko związane z powodziami, mierzone klasyczną metodą aktuarialną „rozmiar strat razy prawdopodobieństwo wystąpienia takiej właśnie sytuacji” zmienia się w różny sposób. Częstość powodzi, a więc prawdopodobieństwo wystąpienia związanych z nimi szkód systematycznie rośnie, jednak od jakichś 20 lat rozmiary lokalnych szkód systematycznie spadają. My, Europejczycy, zaczynamy się przystosowywać do tego konkretnego aspektu zmian klimatycznych. Widać jednak, że przystosowujemy się głównie w miastach. Im więcej infrastruktury miejskiej w jednym miejscu, tym mniejsze straty ludzkie i materialne wywołane powodziami. Duże miasta się bronią przed powodziami ze skutecznością, która gwałtownie spada na terenach wiejskich i w małych miastach. Najwięcej ofiar śmiertelnych zbierają powodzie właśnie na terenach wiejskich.    

Jeżeli chodzi o susze i związane z nimi zagrożenia, sytuacja jest inna. Cztery artykuły na temat temat – Naumann et al. (2015[3]), Vogt et al. (2018[4]), Stagge et al. (2017[5]) oraz Lu et al. (2019[6]) – wskazują, że u nas w Europie dopiero zaczynamy się uczyć ryzyka związanego z suszą. Warto tu zwrócić uwagę na jedną istotną różnicę pomiędzy powodzią a suszą. No wiem, czaję: w pierwszym przypadku jest za dużo wody, w drugim za mało. Chodzi mi o coś innego. Za dużo wody zdarza się gwałtownie i widowiskowo, przynosząc straty wyraźne jak siniak po uderzeniu. Powódź to coś, co przy odrobinie złej woli można obserwować z bezpiecznego miejsca jako interesujący news. Z kolei susza dzieje się powoli i przynosi straty, które widzimy dopiero kiedy nabrzmieją do naprawdę dużych rozmiarów. My, Europejczycy, dopiero zaczynamy rozumieć, kiedy niekorzystny bilans wodny jest prawdziwym powodem do niepokoju. Są już jednak w miarę twarde dane naukowe na temat tych zagrożeń. Wiadomo, że Francja, Hiszpania, Włochy, a także – co zaskakujące – Wielka Brytania są najbardziej zagrożone suszą. U nas w Polsce to tak średnio.

No i tu właśnie dochodzimy to tego, czym dokładnie jest zagrożenie suszą. W najbliższej i najbardziej praktycznej perspektywie grozi nam rozchwianie rynku żywności. Jeżeli ktoś miałby ochotę zerknąć na ceny produktów rolnych w kontraktach terminowych, zobaczy coś na kształt niepokoju na rynku. Ceny są coraz bardziej rozchwiane. Mówimy o kontraktach terminowych, a więc o cenach, jakich nabywcy produktów rolnych oczekują w przyszłości. Im bardziej zmienne i rozbieżne te oczekiwania, tym bardziej rozchwiane ceny. No i czego my możemy oczekiwać, tak obiektywnie? Ciekawie na ten temat piszą Webber et al. (2018[7]). Zmiany klimatyczne wywierają dwojaki wpływ na plony. Zaburzenia hydrologiczne działają na minus, jednak jest jeszcze czynnik tzw. haju węglowego. Zwiększona zawartość węgla w atmosferze pobudza metabolizm roślin. Nie wiemy jednak, do jakiego momentu to pobudzenie będzie działać korzystnie, a po przekroczeniu jakiego progu stanie się czynnikiem niesprzyjającym. Jak to praktycznie działa? Pszenica ozima, na przykład, bez efektu pobudzenia węglowego, może przynosić w 2050 roku o 9% niższe plony niż dziś, podczas gdy z uwzględnieniem haju węglowego można oczekiwać wzrostu plonów o 4%. Nie ma jednak sprawiedliwości na tym świecie i kukurydza wydaje się być skazana na spadek plonów o 20% w 2050 roku, napędzana węglem czy nie.

W tym samym artykule wraca jednak kwestia niepewności odnośnie tego, czym w Europie jest susza, tak praktycznie. Deficyt wody to jedno, a jego funkcjonalny wpływ na rolnictwo to drugie. Znów się tu kłania, w ciekawy sposób, zjawisko naszej zbiorowej inteligencji. Problemy z jednoznacznym prognozowaniem wpływu zmian klimatycznych na rolnictwo wynikają z kwestii metodologicznych. Jeżeli chcemy mieć model, który pozwoli jednoznacznie przewidzieć tą kwestię, lokalne błędy predykcji (wartości resztkowe) dla poszczególnych zmiennych powinny być wzajemnie nieskorelowane, tj. wzajemnie niezależne. W tym przypadku są skorelowane. Wydaje się, że nasze rolnictwo przystosowuje się do zmian klimatycznych tak szybko, że niechcący wpada w tą korelację. Zgodnie z tym, co piszą  Toreti et al. (2019[8]), taka naprawdę ostra jazda klimatyczna w europejskim rolnictwie zaczęła się w roku 2015. Widać też zmiany strukturalne: ubytek w plonach pszenicy jest kompensowany większą produkcją innych zbóż, lecz jednocześnie towarzyszy mu mniejsza produkcja buraków i ziemniaków (Eurostat[9], Schills et al. 2018[10]).

To jest zarys zagrożeń i pora na rozwiązania. Jak mamy coraz mniej wody, która wsiąka wolno, to musimy się nauczyć łapać i zatrzymywać wodę, która spada szybko. Trafiłem na interesujący pomysł w Chinach, wdrażany w 30 aglomeracjach: miasto – gąbka. Jest to szczególny typ infrastruktury miejskiej, nastawiony na wchłanianie i retencję dużych ilości wody deszczowej (Jiang et al. 2018[11]). Ciekawe rozwiązania: nawet specjalny, porowaty beton, zdolny przechowywać deszczówkę. W jednej z 30 chińskich aglomeracji objętych tym programem inwestycyjnym jest Xiamen (Shao et al. 2018[12]) i tam właśnie znalazłem bezpośrednią inspirację dla mojego pomysłu: zatrzymaną deszczówkę można pompować do zbiorników szczytowych, z których spływając ta sama deszczówka napędza turbiny hydroelektryczne.

W Europie ważniejsze wydaje się inwestowanie w gąbczastą wieś raczej niż w gąbczaste miasta. W europejskich realiach miasta są dalekie od megalopolitycznego rozpasania miast chińskich i zmiany klimatyczne zagrażają w pierwszej kolejności wsi oraz jej roli bazy żywnościowej dla miast. Jest taka technologia, którą kiedyś – jeszcze w XVIII wieku – w Europie stosowaliśmy powszechnie i która poszła w zapomnienie wraz z rozpowszechnieniem się urządzeń napędzanych silnikami: pompa wodna napędzana energią wody. Koło wodne zanurzone w nurcie rzeki napędza pompę, która pompuje wodę wzwyż i dalej od rzeki. Znalazłem dwie firmy, które dostarczają taką technologię w nowoczesnej wersji: PreScouter i Aqysta. Taka właśnie pompa może tłoczyć wodę z rzeki do zbiorników szczytowych, skąd dalej spływałaby – przechodząc przez turbiny hydroelektryczne – do sieci stawów i kanałów zatrzymujących wodę. Chodzi mi właśnie o to, żeby zamiast gromadzić wodę w dużym zbiorniku retencyjnym, raczej ją rozprowadzać po stosunkowo dużym obszarze podmokłych łąk i niewielkich rozlewisk. Woda wypompowana z rzeki do zbiorników szczytowych ląduje więc w końcu w strukturach irygacyjnych, które powstrzymują ją przed spływaniem dalej korytem rzeki.

Wracam do kwestii polskiej nazwy dla tego pomysłu. Na razie nazwę to „Energo-Retencja”. Tak czy inaczej, to tylko etykietka ułatwiająca dyskusję na temat tego pomysłu. Poniżej staram się pokazać graficznie, o co mi chodzi.

Kiedy idzie duża woda po silnych deszczach, poziom rzeki się podnosi i przepływ na sekundę w nurcie rzeki się zwiększa. Pompa wodna dostaje więcej energii kinetycznej, ma większą moc i szybciej pompuje wodę do zbiornika szczytowego. Więcej wody przepływa przez zbiornik, więcej spływa z niego w dół przez turbiny hydroelektryczne i te z kolei wytwarzają większą moc. Więcej wody ląduje w stawach i kanałach retencyjnych, które swoją drogą zatrzymują bezpośrednio wodę spadającą z nieba. Poziom wód gruntowych się podnosi, coraz dalej i dalej od koryta rzeki.

Kiedy przychodzi susza meteorologiczna, czyli kiedy mnóstwo za bardzo nie pada, zasilenie nurtu rzeki deszczem maleje do zera. Wtedy rzeka zaczyna działać jak dren i odciąga wodę gruntową z przylegających do niej terenów. Poziom rzeki stopniowo opada i zmniejsza się przepływ. Pompy zanurzone w jej nurcie mają mniej energii i mniej wody pompują do zbiorników szczytowych. Mniej wody przepływa przez turbiny i mniej wody ląduje w strukturach retencyjnych. Susza meteorologiczna osłabia działanie całego systemu Energo-Retencji, jednak im więcej wody było zmagazynowane wcześniej w gruncie, tym mniejszy spadek poziomu rzeki i jej przepływu. No tak: rzeka działa jak dren, a więc im więcej wody ma do wydrenowania z okolicznych gruntów, tym wolniej opada przy braku deszczu.

Zakładam, że system ten można zoptymalizować dla konkretnego miejsca i jego uwarunkowań: podczas wysokiej wody gromadzimy wystarczająco dużo wód gruntowych, żeby susza meteorologiczna w minimalnym stopniu zaburzała przepływ rzeki w tym miejscu, a więc żeby lokalny poziom wód gruntowych oraz lokalnie wytwarzana energia hydroelektryczna były jak najbardziej przewidywalne. To jest moje założenie jako laika w dziedzinie hydrologii. Potrzebowałbym wsparcia kogoś, kto naprawdę się na tym zna. Jedno jest jednak widoczne: z energetycznego punktu widzenia system powinien być wyposażony w akumulatory gromadzące energię elektryczną. Wysoka woda daje rezerwy, które zużywamy przy niższej wodzie.   

Myślę o tym, jak mogłaby wyglądać budowa takiej infrastruktury na terenach wiejskich, a szczególnie myślę nad jej finansowaniem i zarządzaniem nią. Pierwsze skojarzenie mam takie, że jeżeli całość ma wytwarzać energię elektryczną, to właśnie wartość rynkowa tej energii może być podstawą do zwrotu z inwestycji. Myślę tak: woda, która spada z nieba w milimetrach na rok spada w gruncie rzeczy w litrach na metr kwadratowy. W Polsce spada 600 milimetrów opadów atmosferycznych rocznie, czyli 600 litrów na metr kwadratowy, czyli 187 600 bilionów litrów w sumie na wszystkie metry kwadratowe. Przy obecnej gospodarce wodnej zatrzymujemy 28,57% z tych opadów, czyli 53 600 bilionów litrów. Nawiasem mówiąc, zdolność retencji wody jest bardzo zróżnicowana w Europie. My jesteśmy gdzieś w tyle stawki. Może być gorzej, np. retencja niecałych 11% opadów na Węgrzech, ale może też być dużo lepiej: 42,75% w Niemczech czy 44,79% w Estonii. Przy obecnym rozwoju hydrologii, zdolność retencji wody zależy głównie od budowy geologicznej: mistrzami retencji są kraje śródziemnomorskie leżące na grubym, skalistym podłożu z mnóstwem kieszeni wodonośnych w środku. Włochy zatrzymują 72,80% opadów, Grecja 67,41%, Chorwacja 59,86% (FAO AQUASTAT[1]).

Załóżmy więc, że nowa infrastruktura do zatrzymywania wody opadowej pozwoliłaby nam w Polsce przejść od obecnej retencji do 28,57% do 42%, czyli prawie jak w Niemczech. To by oznaczało, że zatrzymywalibyśmy o 25 192 bilionów litrów więcej w skali roku. Jaką wartość przedstawia sobą ta woda na rynku energii elektrycznej? Tu liczy się w pierwszym rzędzie przepływ w litrach na sekundę. W ciągu roku mamy tak typowo 8760 godzin (w latach przestępnych 8784 godziny) razy 60 sekund w godzinie, czyli 525 600 sekund. Zwiększona retencja dałaby nam zatem 25 192 bilionów litrów dzielone przez 525 600 sekund = 47,93 miliardów litrów na sekundę. Po to, żeby ten przepływ mógł wytwarzać energię elektryczną, to musi płynąć. Logiczne. Woda płynie z góry na dół, z przyspieszeniem ziemskim równym g = 9,81 m/s2. Ważne jest, jak bardzo z góry na dół, czyli jaka jest różnica poziomów w metrach. W moim pomyśle widzę zbiorniki szczytowe o konstrukcji tzw. wież wodnych wysokich na 10 metrów (tzn. dno zbiornika jest na wysokości 10 metrów). Turbiny wodne mają średnią wydajność energetyczną 75%.  Biorę więc 47,93 miliardów litrów i mnożę przez 10 metrów i potem jeszcze przez 9,81 m/s2 no i jeszcze przez 75%. Wychodzi moc elektryczna w watach, a konkretnie to 3 526,45 gigawatów mocy. Dużo. Szczególnie, że obecna łączna moc wszystkich elektrowni w Polsce wynosi 43,6 gigawata, z tego elektrownie wodne to 2,3 gigawata.

No fajnie. Wygląda jak science-fiction. Gdybyśmy zdołali stworzyć infrastrukturę pozwalającą zwiększyć naszą retencję wody opadowej do poziomu Niemiec – 42% – i gdybyśmy całą tą dodatkową wodę puścili przez turbiny elektryczne z 10 – metrowych zbiorników szczytowych, to mielibyśmy osiemdziesiąt razy więcej energii elektrycznej niż mamy obecnie ze wszystkich źródeł razem wziętych. Może trochę skromniej policzę, o ile więcej deszczówki powinniśmy zatrzymać i wykorzystać w turbinach hydroelektrycznych, żeby pokryć całe zapotrzebowanie naszego kraju na energię. Zgodnie z danymi Banku Światowego, statystyczny Polak zużywa rocznie energię równą 2 490,2 kg równoważnika ropy naftowej, czyli 2 490,2 * 11,63 =  28 961,03 kilowatogodzin. Czyli gdybym chciał mieć wszystko na prąd ( w sensie wszystko to, co już mam na prąd plus to, co mam na gaz i na benzynę), to potrzebowałbym 28 961,03 kilowatogodzin rocznie dzielone przez 8760 godzin w roku = 3,31 kilowata mocy elektrycznej. Ty też i on też. Oni też. Jest nas onych w sumie 38 430 000, czyli potrzebowalibyśmy 127,05 gigawata mocy. Liczę teraz wspak. Mnożę te gigawaty przez miliard – żeby były waty – oraz przez 525 600 sekund w roku, a następnie dzielę przez 98,1 (10 metrów razy 9,81 metra na sekundę kwadratową) oraz przez 75% wydajności. Wychodzi 907,6 miliona metrów sześciennych wody. To jest 0,48% rocznych opadów atmosferycznych w Polsce. Może inaczej: gdybyśmy zbudowali infrastrukturę, która umożliwi zatrzymanie 29,06% opadów zamiast dzisiejszych 28,57% i gdybyśmy tą dodatkową zatrzymaną wodę przepuścili przez 10-metrowe zbiorniki szczytowe, a następnie spuścili ją przez turbiny elektryczne, to zaspokoilibyśmy pełne zapotrzebowanie kraju na energię. Każdą energię, także tą spożywaną w produktach i usługach, które kupuję.

Lubię ugniatać moje pomysły. Cudze zresztą też. Patrzę na to samo z różnych punktów widzenia. Wyczytałem, że typowy zbiornik szczytowy „na nóżkach”, czyli taki budowany w szczerym polu, ma ok. 5000 m3 pojemności. Owe 907 600 000 m3 wody potrzebnych do zaspokojenia naszych potrzeb energetycznych to 181 520 takich zbiorników. Gdybyśmy je zrobili wysokie na 20 metrów zamiast na 10, to wtedy potrzebowalibyśmy tylko 454 000 000 m3 wody i nieco ponad 90 000 takich zbiorników. Innymi słowy, im wyższe wieże zbiorników szczytowych w „Energo-Retencji”, tym więcej prądu można zrobić z tej samej ilości wody.

Teraz ugniatam od innej strony. Biorę moje rachunki za prąd, dla dwóch lokalizacji: domu jednorodzinnego oraz mieszkania w bloku. W obu ta sama grupa taryfowa G11, z tymże w domu jednorodzinnym mam moc przyłączeniową 14 kilowatów i prąd trójfazowy, a w bloku 4 kilowaty i jedną fazę. Płacąc za prąd, płacę za dwie rzeczy: za gotowość dostawcy (Tauron) do podania mocy, czyli za dystrybucję oraz za faktycznie zużytą energię. Mimo, że oba liczniki mam w tej samej grupie taryfowej, cena za 1 kilowatogodzinę zużytej energii jest nieco różna: 0,24450 zł netto za 1 kWh przy jednej fazie w mieszkaniu i 0,24110 zł przy trzech fazach w domu. Jeżeli chodzi o gotowość Taurona do sprzedawania mi prądu, to deklinuje się ona na wiele sposobów: opłata dystrybucyjna zmienna, opłata dystrybucyjna stała itd. Żeby było śmieszniej, opłata dystrybucyjna zmienna jest stała i wynosi 0,19020 zł za 1 kWh, a opłata dystrybucyjna stała jest zmienna i buja się między 8,34 zł a 22 zł za okres rozliczeniowy. Ja te wszystkie zmiennostałe składniki mojej faktury sumuję razem do kupy i wychodzi mi, że w domu jednorodzinnym, przy 14 kilowatach mocy na liczniku, za utrzymanie 1 kilowata płacę 30,20 zł za okres rozliczeniowy, podczas gdy w mieszkaniu wychodzi to 25,62 za kilowat.

No i jak pougniatałem moje rachunki za prąd razem z moim pomysłem „Energo-Retencja”, wyszła mi masa, z której następnie formuję kontrakty inteligentne na platformie crowdfundingowej. Wyobraźmy sobie, że zamiast płacić dostawcy prądu za gotowość dostarczania mi mocy z odległej elektrowni, płacę za kolejne jednostki udziałowe (akcje?) w lokalnej infrastrukturze typu „Energo-Retencja”. Duża firma – Tauron, PGE, Energa czy jeszcze ktoś inny – inwestuje w stworzenie i rozruch takiej infrastruktury w mojej okolicy. Inwestycja ma postać wyodrębnionej, lokalnej spółki. Następnie początkowy inwestor oferuje mnie i innym w okolicy kupno złożonych kontraktów, w których płacimy z wyprzedzeniem za energię elektryczną na przyszłość – czyli np. płacę z góry za prąd na kolejny rok – a jednocześnie płacimy za kolejne jednostki udziałowe w lokalnej spółce. W ten sposób lokalna społeczność stopniowo przejmuje kontrolę kapitałową nad lokalną spółką będącą operatorem infrastruktury typu „Energo-Retencja”. Kontrakty mają być inteligentne, a więc możliwe do elastycznego budowania z drobnych części składowych i sprzedawane za pośrednictwem platformy crowdfundingowej. Jeżeli jestem zainteresowany, to mogę zrobić koszyk zamówień na przyszły prąd i koszyk udziałów w spółce, która go wytwarza.

No dobra, to teraz rzut oka na to, jak by ta spółka wyglądała, tak konkretnie, na początek od strony technologicznej oraz infrastrukturalnej. Wracam do mojego rachunku za prąd w domu jednorodzinnym: gospodarstwo domowe złożone z trzech osób, 14 kilowatów mocy w trzech fazach. W trzymiesięcznym okresie rozliczeniowym zużyliśmy 1838 kWh energii elektrycznej, więc za rok wychodziłoby 4*1838 = 3676 kWh. Przy 14 kilowatach mocy, jadąc po bandzie i na maksa mamy do dyspozycji 14 kW * 8760 godzin = 122 640 kWh w ciągu roku. Nasze faktyczne zużycie odpowiada więc w przybliżeniu 3% energii teoretycznie dostępnej z tego przyłącza, w którym, gdybyśmy zużywali energię elektryczną w sposób doskonale równomierny, potrzebowalibyśmy tylko 0,42 kW mocy. Gdybyśmy, to tak, ale odkurzacz chodzi tylko czasem, pralka i odkurzacz razem jeszcze bardziej czasem, a piekarnik elektryczny jednocześnie z nimi to już w ogóle rzadko. Moc przyłączeniowa musi być jednak wystarczająca na te rzadkie momenty, kiedy wszystko na raz chodzi. Kuchenkę mamy gazową, ale gdybyśmy mieli płytę elektryczną, to trzeba na nią liczyć co najmniej 7,5 kilowata. Piec mamy też gazowy, ale gdybyśmy go zastąpili bojlerem elektrycznym, trzeba dołożyć co najmniej 3 ÷ 4 kW.

Nasze systemy energetyczne funkcjonują właśnie w ten sposób: wykorzystujemy ich dostępną moc tylko w części, lecz potrzebujemy bufora na niektóre okazje. Kilka akapitów wcześniej pisałem, że w Polsce zużycie energii na głowę mieszkańca to 28 961,03 kilowatogodzin rocznie i obejmuje to wszystkie postacie energii: tą zużywaną w domu, tą potrzebną do różnych form transportu i wreszcie tą, którą pośrednio zużywam kupując nową koszulę albo słone paluszki. Gdzie energia w koszuli? Ano w procesie jej wytwarzania i dystrybucji. W słonych paluszkach takoż. W moim gospodarstwie domowym, złożonym z trzech osób, teoretycznie możemy na nasze własne domowe potrzeby zużyć 122 640 kWh energii elektrycznej, a więc 122 640 kWh / (3*28 961,03 kWh) = 1,41 razy więcej energii niż ogółem zużywają trzy statystyczne osoby. Zużywamy z tego jednak tylko 3%.  

Kiedy więc myślę o lokalnej spółce działającej według koncepcji „Energo-Retencji” i zastanawiam się nad jej rolą dla lokalnej społeczności – poza poprawą lokalnej gospodarki wodnej – przychodzą mi na myśl dwa możliwe układy kontraktowe. Pierwszy jest klasyczny i odpowiada dzisiejszym realiom. Turbiny i akumulatory „Energo-Retencji” podłączone są do sieci dystrybucyjnej, sprzedają energię do tejże sieci i jej operator odsprzedaje tą energię do użytkowników końcowych. Energia wytwarzana w „Energo – Retencji” jest jedną z wielu dystrybuowanych w sieci. Zalety: stabilność zasilania dla mojego piekarnika elektrycznego oraz możliwość przenoszenia energii na duże odległości poprzez sieć dystrybucyjną. Nasze lokalne turbiny hydroelektryczne mogą mieć w ten sposób wartość ekonomiczną dla konsumentów energii oddalonych nawet o setki kilometrów. Wady: konieczność dołożenia do ceny energii nadwyżki opłacającej dystrybucję.

Drugi możliwy układ to energia elektryczna z „Energo – Retencji” w roli głównego źródła prądu dla lokalnej społeczności. To właśnie z „Energo – Retencji” pochodziłaby całość (albo prawie) tych 14 czy iluś tam kilowatów na każdym indywidualnym przyłączu. Ponieważ małe turbiny hydroelektryczne, przewidziane w moim pomyśle, wytwarzają prąd o stosunkowo niskim napięciu, lokalna sieć jego dystrybucji byłaby niewielka i raczej niskonapięciowa. Zalety: koszty dystrybucji bliskie zeru (de facto brak miejsca dla firmy dystrybucyjnej) oraz swego rodzaju technologiczna więź lokalnej społeczności z lokalną spółką typu „Energo-Retencja”. Wady: ekspozycja na ryzyko związane z możliwą awarią takiego lokalnego systemu.   


[1] http://www.fao.org/aquastat/en/ ostatni dostęp 1 sierpnia 2019


[1] Alfieri, L., Feyen, L., Dottori, F., & Bianchi, A. (2015). Ensemble flood risk assessment in Europe under high end climate scenarios. Global Environmental Change, 35, 199-212.

[2] Paprotny, D., Sebastian, A., Morales-Nápoles, O., & Jonkman, S. N. (2018). Trends in flood losses in Europe over the past 150 years. Nature communications, 9(1), 1985.

[3] Gustavo Naumann et al. , 2015, Assessment of drought damages and their uncertainties in Europe, Environmental Research Letters, vol. 10, 124013, DOI https://doi.org/10.1088/1748-9326/10/12/124013

[4] Vogt, J.V., Naumann, G., Masante, D., Spinoni, J., Cammalleri, C., Erian, W., Pischke, F., Pulwarty, R., Barbosa, P., Drought Risk Assessment. A conceptual Framework. EUR 29464 EN, Publications Office of the European Union, Luxembourg, 2018. ISBN 978-92-79-97469-4, doi:10.2760/057223, JRC113937

[5] Stagge, J. H., Kingston, D. G., Tallaksen, L. M., & Hannah, D. M. (2017). Observed drought indices show increasing divergence across Europe. Scientific reports, 7(1), 14045.

[6] Lu, J., Carbone, G. J., & Grego, J. M. (2019). Uncertainty and hotspots in 21st century projections of agricultural drought from CMIP5 models. Scientific reports, 9(1), 4922.

[7] Webber, H., Ewert, F., Olesen, J. E., Müller, C., Fronzek, S., Ruane, A. C., … & Ferrise, R. (2018). Diverging importance of drought stress for maize and winter wheat in Europe. Nature communications, 9(1), 4249.

[8] Toreti, A., Cronie, O., & Zampieri, M. (2019). Concurrent climate extremes in the key wheat producing regions of the world. Scientific reports, 9(1), 5493.

[9] https://ec.europa.eu/eurostat/statistics-explained/index.php/Agricultural_production_-_crops ostatni dostęp 14 lipca 2019

[10] Schils, R., Olesen, J. E., Kersebaum, K. C., Rijk, B., Oberforster, M., Kalyada, V., … & Manolov, I. (2018). Cereal yield gaps across Europe. European journal of agronomy, 101, 109-120.

[11] Jiang, Y., Zevenbergen, C., & Ma, Y. (2018). Urban pluvial flooding and stormwater management: A contemporary review of China’s challenges and “sponge cities” strategy. Environmental science & policy, 80, 132-143.

[12] Shao, W., Liu, J., Yang, Z., Yang, Z., Yu, Y., & Li, W. (2018). Carbon Reduction Effects of Sponge City Construction: A Case Study of the City of Xiamen. Energy Procedia, 152, 1145-1151.

Leave a Reply