Black Swans happen all the time

MY EDITORIAL ON YOU TUBE

I continue with the topic of Artificial Intelligence used as a tool to study collective intelligence in human social structures. In scientific dissertations, the first question, to sort of answer right off the bat, is: ‘Why should anyone bother?’. What is the point of adding one more conceptual sub-repertoire, i.e. that of collective intelligence, to the already abundant toolbox of social sciences? I can give two answers. Firstly, and most importantly, we just can do it. We have Artificial Intelligence, and artificial neural networks are already used in social sciences as tools for optimizing models. From there, it is just one more step to use the same networks as tools for simulation: they can show how specifically a given intelligent adaptation is being developed. This first part of the answer leads to the second one, namely to the scientific value added of such an approach. My essential goal is to explore the meaning, the power, and the value of collective intelligent adaptation as such, and artificial neural networks seem to be useful instruments to that purpose.

We live and we learn. We learn in two different ways: by experimental trial and error, on the one hand, and by cultural recombination of knowledge. The latter means more than just transmission of formalized cultural content: we can collectively learn as we communicate to each other what we know and as we recombine those individual pieces of knowledge. Quite a few times already, I have crossed my intellectual paths with the ‘Black Swan Theory’ by Nassim Nicholas Taleb, and its central claim that we collectively tend to silence information about sudden, unexpected events which escape the rules of normality – the Black Swans – and yet our social structures are very significantly, maybe even predominantly shaped by those unusual events. This is very close to my standpoint. I claim that we, humans, need to find a balance between chaos and order in our existence. Most of our culture is order, though, and this is pertinent to social sciences as well. Still, it is really interesting to see – and possibly experiment with – the way our culture deals with the unpredictable and extraordinary kind of s**t, sort of when history is really happening out there.

I have already had a go at something like a black swan, using a neural network, which I described in The perfectly dumb, smart social structure. The thing I discovered when experimenting with that piece of AI is that black swans are black just superficially, sort of. At the deepest, mathematical level of reality, roughly at the same pub where Pierre Simon Laplace plays his usual poker game, unexpectedness of events is a property of human cognition, and not that of reality as such. The relatively new Interface Theory of Perception (Hoffman et al. 2015[1]; Fields et al. 2018[2]; see also I followed my suspects home) supplies interesting insights in this respect. States of the world are what they are, quite simply. No single state of the world is more expected than others, per se. We expect something to happen, or we don’t although we should. My interpretation of the Nassim Nicholas Taleb’s theory is that Black Swans appear when we have a collective tendency to sort of over-smooth a given chunk of our experience and we collectively commit not to give a f**k about some strange outliers, which sort of should jump to the eye but we cognitively arrange so as they don’t really. Cognitively, Black Swans are qualia rather than phenomena as such.

Another little piece of knowledge I feel like contributing to the theory of Black Swan is that collective intelligence of human societies – or culture, quite simply – is compound and heterogenous. What is unexpected to some people is perfectly normal to others. This is how professional traders make money in financial markets: they are good at spotting recurrence in phenomena which look like perfect Black Swans to the non-initiated market players.

In the branch of philosophy called ‘praxeology’, there is a principle which states that the shortest path to a goal is the most efficient path, which is supposed to reflect the basics of Newtonian physics: the shortest path consumes the least amount of energy. Still, just as Newtonian physics are being questioned by their modern cousins, such as quantum physics, that classical approach of praxeology is being questioned by modern social sciences. I was born in the communist Poland, in 1968, and I spent the first 13 years of my life there. I know by heart the Marxist logic of the shortest path. You want people to be equal? Force them to be equal. You want to use resources in the most efficient way? Good, make a centralized, country-wide plan for all kinds of business, and you know what, make it five-year long. The shortest, the most efficient path, right? Right, there was only one thing: it didn’t work. Today, we have a concept to explain it: hyper-coordination. When a big organization focuses on implementing one, ‘perfect’ plan, people tend to neglect many opportunities to experiment with little things, sort of sidekicks regarding the main thread of the plan. Such neglect has a high price, for a large number of what initially looks like haphazard disturbances is valuable innovation. Once put aside, those ideas seldom come back, and they turn into lost opportunities. In economic theory, lost opportunities have a metric attached. It is called opportunity cost. Lots of lost opportunities means a whole stockpile of opportunity cost, which, in turn, takes revenge later on, in the form of money that we don’t earn on the technologies we haven’t implemented. Translated into present day’s challenges, lost ideas can kick our ass as lost chances to tackle a pandemic, or to adapt to climate change.

The shortest path to a goal is efficient under the condition that we know the goal. In long-range strategies, we frequently don’t know it, and then adaptative change is the name of the game. Here come artificial neural networks, once again. At the first sight, if we assume learning by trial and error and who knows where exactly we are heading, we tend to infer that we don’t know at all. Still, observing neural networks with their sleeves up and doing computational work teaches an important lesson: learning by trial and error follows clear patterns and pathways, and so does adaptative change. Learning means putting order in the inherent chaos of reality. Probably the most essential principle of that order is that error is information, and, should it be used for learning, it needs to be memorized, remembered, and processed.

Building a method of adaptative learning is just as valuable as, and complementary to preparing a plan with clearly cut goals. Goals are cognitive constructs which we make to put some order in the chaos of reality. These constructs are valuable tools for guiding our actions, yet they are in loop with our experience. We stumble upon Black Swans more frequently than we think. We just learn how to incorporate them into our cognition. I have experienced, in my investment strategy, the value and the power of consistent, relentless reformulation and re-description of both my strategic goals and of my experience.

How does our culture store information about events which we could label as errors? If I want to answer that question, I need to ask and answer another one: how do we collectively know that we have made a collective error, which can possibly be used as material for collective learning? I stress very strongly the different grammatical transformations of the word ‘collective’. A single person can know something, by storing information, residual from sensory experience, in the synapses of the brain. An event can be labelled as error, in the brain, when it yields an outcome non-conform to the desired (expected) one. Of course, at this point, a whole field of scientific research emerges, namely that of cognitive sciences. Still, we have research techniques to study that stuff. On the other hand, a collective has no single brain, as a distinct information processing unit. A collective cannot know things in the same way an individual does.

Recognition of error is a combination of panic in front of chaos, on the one hand, and objective measurement of the gap between reality and expected outcomes.  Let’s illustrate it with an example. When I am writing these words, it is July 12th, 2020, and it is electoral day: we are having, in Poland, the second-round ballot in presidential elections. As second rounds normally play out, there are just two candidates, the first two past-the-post in the first-round ballot. Judging by the polls, and by the arithmetic of transfer from the first round, it is going to be a close shave. In a country of about 18 million voters, and with an expected electoral attendance over 50%, the next 5 years of presidency is likely to be decided by around 0,5% of votes cast, roughly 40 ÷ 50 thousand people. Whatever the outcome of the ballot, there will be roughly 50% of the population claiming that our country is on the right track, and another 50% or so pulling their hair out and screaming that we are heading towards a precipice. Is there any error to make collectively, in this specific situation? If so, who and how will know whether the error really occurred, what was its magnitude and how to process the corresponding information?

Observation of neural networks at work provides some insights in that respect. First of all, in order to assess error, we need a gap between the desired outcome and the state of reality such as it is. We can collectively assume that something went wrong if we have a collective take on what would be the perfect state of things. What if the desired outcome is an internally conflicted duality, as it is the case of the Polish presidential elections 2020? Still, that collectively desired outcome could be something else that just the victory of one candidate. Maybe the electoral attendance? Maybe the fact of having elections at all? Whatever it is that we are collectively after, we learn by making errors at nailing down that specific value.

Thus, what are we collectively after? Once again, what is the point of discovering anything in respect to presidential elections? Politics are functional when they help uniting people, and yet some of the most efficient political strategies are those which use division rather than unity. Divide et impera, isn’t it? How to build social cooperation at the ground level, when higher echelons in the political system love playing the poker of social dissent? Understanding ourselves seems to be the key.    

Once again, neural networks suggest two alternative pathways for discovering it, depending on the amount of data we have regarding our own social structure. If we have acceptably abundant and reliable data, we can approach the thing straightforwardly, and test all the variables we have as the possible output ones in the neural network supposed to represent the way our society works. Variables which, when pegged as output ones in the network, allow the neural network to produce datasets very similar to the original one, are probably informative about the real values pursued by the given society. This is the approach I have already discussed a few times on my blog. You can find a scientific example of its application in my paper on energy efficiency.

There is another interesting way of approaching the same issue, and this one is much more empiricist, as it forces to discover more from scratch. We start with the simple observation that things change. When they change a lot, and we can measure change on some kind of quantitative scale, we call it variance. There is a special angle of approach to variance, when we observe it over time. Observable behavioural change – or variance at different levels of behavioural patterns – includes a component of propagated error. How? Let’s break it down.

When I change my behaviour in a non-aleatory way, i.e. when my behavioural change makes at least some sense, anyone can safely assume that I made the change for a reason. I changed my behaviour because my experience tells me that I should. I recognized something I f**ked up or some kind of frustration with the outcomes of my actions, and I change. I have somehow incorporated information about past error into my present behaviour, whence the logical equivalence: Variance in behaviour = Residual behaviour + Adaptive change after the recognition of error + Aleatory component.

Discover Social Sciences is a scientific blog, which I, Krzysztof Wasniewski, individually write and manage. If you enjoy the content I create, you can choose to support my work, with a symbolic $1, or whatever other amount you please, via MY PAYPAL ACCOUNT.  What you will contribute to will be almost exactly what you can read now. I have been blogging since 2017, and I think I have a pretty clearly rounded style.

In the bottom on the sidebar of the main page, you can access the archives of that blog, all the way back to August 2017. You can make yourself an idea how I work, what do I work on and how has my writing evolved. If you like social sciences served in this specific sauce, I will be grateful for your support to my research and writing.

‘Discover Social Sciences’ is a continuous endeavour and is mostly made of my personal energy and work. There are minor expenses, to cover the current costs of maintaining the website, or to collect data, yet I want to be honest: by supporting ‘Discover Social Sciences’, you will be mostly supporting my continuous stream of writing and online publishing. As you read through the stream of my updates on https://discoversocialsciences.com , you can see that I usually write 1 – 3 updates a week, and this is the pace of writing that you can expect from me.

Besides the continuous stream of writing which I provide to my readers, there are some more durable takeaways. One of them is an e-book which I published in 2017, ‘Capitalism And Political Power’. Normally, it is available with the publisher, the Scholar publishing house (https://scholar.com.pl/en/economics/1703-capitalism-and-political-power.html?search_query=Wasniewski&results=2 ). Via https://discoversocialsciences.com , you can download that e-book for free.

Another takeaway you can be interested in is ‘The Business Planning Calculator’, an Excel-based, simple tool for financial calculations needed when building a business plan.

Both the e-book and the calculator are available via links in the top right corner of the main page on https://discoversocialsciences.com .

You might be interested Virtual Summer Camps, as well. These are free, half-day summer camps will be a week-long, with enrichment-based classes in subjects like foreign languages, chess, theatre, coding, Minecraft, how to be a detective, photography and more. These live, interactive classes will be taught by expert instructors vetted through Varsity Tutors’ platform. We already have 200 camps scheduled for the summer.   https://www.varsitytutors.com/virtual-summer-camps


[1] Hoffman, D. D., Singh, M., & Prakash, C. (2015). The interface theory of perception. Psychonomic bulletin & review, 22(6), 1480-1506.

[2] Fields, C., Hoffman, D. D., Prakash, C., & Singh, M. (2018). Conscious agent networks: Formal analysis and application to cognition. Cognitive Systems Research, 47, 186-213. https://doi.org/10.1016/j.cogsys.2017.10.003

Cruel and fatalistic? Weelll, not necessarily.

MY EDITORIAL ON YOU TUBE

I am developing on one particular thread in my research, somehow congruent with the research on the role of cities, namely the phenomenon of collective intelligence and the prospects for using artificial intelligence to study human social structures. I am going both for good teaching material and for valuable scientific insight.

In social sciences, we face sort of an embarrassing question, which nevertheless is a fundamental one, namely how should we interpret quantitative data about societies. Simple but puzzling: are those numbers a meaningful representation of collectively pursued desired outcomes, or should we view them as largely random, temporary a representation of something going on at a deeper, essentially unobserved level?

I guess I can use artificial neural networks to try and solve that puzzle, at least to some extent. like starting with empirics, or, in plain human, with facts which I have observed so far. My most general observation, pertinent to every single instance of me meddling with artificial neural networks is that they are intelligent structures. I ground this general claim in two specific observations. Firstly, a neural network can experiment with itself, and come up with meaningful outcomes of experimentation, whilst keeping structural stability. In other words, an artificial neural network can change a part of itself whilst staying the same in its logical frame. Secondly, when I make an artificial neural network observe its own internal coherence, that observation changes the behaviour of the network. For me, that capacity to do meaningful and functional introspection is an important sign of intelligence.

This intellectual standpoint, where artificial neural networks are assumed to be intelligent structures, I pass to the question what kind of intelligence those networks can possibly represent. At this point I assume that human social structures are intelligent, too, as they can experiment with themselves (to some extent) whilst keeping structural stability, and they can functionally observe their own internal coherence and learn therefrom. Those two intelligent properties of human social structures are what we commonly call culture.

As I put those two intelligences – that of artificial neural networks and that of human social structures – back to back, I arrive at a new definition of culture. Instead of defining culture as a structured collection of symbolic representations, I define it as collective intelligence of human societies, which, depending on its exact local characteristics, endows those societies with a given flexibility and capacity to change, through a given capacity for collective experimentation.      

Once again, these are my empirical observations, the most general ones regarding the topic at hand. Empirically, I can observe that both artificial neural networks and human social structures can experiment with themselves in the view of optimizing something, whilst maintaining structural stability, and yet that capacity to experiment with itself has limits. Both a neural network and a human society can either stop experimenting or go haywire when experimentation leads to excessively low internal coherence of the system. Thence the idea of using artificial neural networks to represent the way that human social structures experiment with themselves, i.e. the way we are collectively intelligent. When we think about our civilisation, we intuitively ask what’s the endgame, seen from the present moment. Where are we going? That’s a delicate question, and, according to historians such as Arnold Toynbee, this is essentially a pointless one. Civilisations develop and degenerate, and supplant each other, in multi-secular cycles of apparently some 2500 – 3500 years each. If I ask the question ‘How can our civilisation survive, e.g. how can we survive climate change?’, the most rationally grounded answer is ‘Our civilisation will almost certainly fade away and die out, and then a new civilisation will emerge, and climate change could be as good an excuse as anything else to do that transition’. Cruel and fatalistic? Weelll, not necessarily. Think and ask yourself: would you like to stay the same forever? Probably not. The only way to change is to get out of our comfort zone, and the same is true for civilisations. The death of civilisations is different from extinction: when a civilisation dies, its culture transforms radically, i.e. its intelligent structure changes, yet the human population essentially survives.        

Social sciences are sciences because they focus on the ‘how?’ more than on the ‘why?’. The ‘why?’ implies there is a reason for everything, thus some kind of ultimate goal. The ‘how?’ dispenses with those considerations. The personal future of each individual human is almost entirely connected to the ‘how?’ of civilizational change and virtually completely disconnected from the ‘why?’. Civilisations change at the pace of centuries, and this is a slow pace. Even a person who lives for 100 years can see only a glimpse of human history. Yes, our individual existences are incredibly rich in personal experience, and we can use that existential wealth to make our own lives better, and to give a touch of betterment to the lives of incoming humans (i.e. our kids), and yet our personal change is very different from civilizational change. I will even go as far as claiming that individual human existence, with all its twists and turns, usually takes place inside one single cultural pattern, therefore inside a given civilisation. There are just a few human generations in the history of mankind, whose individual existences happened at the overlapping between a receding civilization and an emerging one.

On the night of July 6th, 2020, I had that strange dream, which I believe could be important in the teaching of social sciences. I dreamt of being pursued by some not quite descript ‘them’, in a slightly gangster fashion. I knew they had guns. I procured a gun for myself by breaking its previous owner neck by surprise. Yes, it is shocking, but it was just the beginning. I was running away from those people who wanted to get me. I was running through something like an urban neighbourhood, slightly like Venice, Italy, with a lot of canals all over the place. As I was running, I was pushing people into those canals, just to have freeway and keep running. I shot a few people dead, when they tried to get hold of me. All the time, I was experiencing intense, nagging fear. I woke up from that dream, shortly after midnight, and that intense fear was still resonating in me. After a few minutes of being awake, and whilst still being awake, I experienced another intense frame of mind, like a realization: me in that dream, doing horrible things when running away from people about whom I think they could try to hurt me, it was a metaphor of quite a long window in my so-far existence. Many a time I would just rush forward and do things I am still ashamed of today, and, when I meditate about it, I was doing it out of that irrational fear that other people could do me harm when they sort of catch on. When this realization popped in my mind, I immediately calmed down, and it was deep serenity, as if a lot of my deeply hidden fears had suddenly evaporated.

Fear is a learnt response to environmental factors. Recently, I have been discovering, and I keep discovering something new about fear: its fundamentally irrational nature. All of my early life, I have been taught that when I am afraid of something, I probably have good reasons to. Still, over the last 3 years, I have been practicing intermittent fasting (combined with a largely paleo-like diet), just to get out of a pre-diabetic state. Month after month, I was extending that window of fasting, and now I am at around 17 – 18 hours out of 24. A little bit more than one month ago, I decided to jump over another hurdle, i.e. that of fasted training. I started doing my strength training when fasting, early in the morning. The first few times, my body was literally shaking with fear. My muscles were screaming: ‘Noo! We don’t want effort without food!’. Still, I gently pushed myself, taking good care of staying in my zone of proximal development, and already after a few days, all changed. My body started craving for those fasted workouts, as if I was experiencing some strange energy inside of me. Something that initially had looked like a deeply organic and hence 100% justified a fear, turned out to be another piece of deeply ingrained bullshit, which I removed safely and fruitfully.

My generalisation on that personal experience is a broad question: how much of that deeply ingrained bullshit, i.e. completely irrational and yet very strong beliefs do we carry inside our body, like literally inside our body? How much memories, good and bad, do we have stored in our muscles, in our sub-cortical neural circuitry, in our guts and endocrine glands? It is fascinating to discover what we can change in our existence when we remove those useless protocols.

So far, I have used artificial neural networks in two meaningful ways, i.e. meaningful from the point of view of what I know about social sciences. It is generally useful to discover what we, humans, are after. I can use a dataset of common socio-economic stats, and test each of them as the desired outcome of an artificial neural network. Those stats have a strange property: some of them come as much more likely desired outcomes than others. A neural network oriented on optimizing those ‘special’ ones is much more similar to the original data than networks pegged on other variables. It is also useful to predict human behaviour. I figured out a trick to make such predictions: I define patterns of behaviour (social roles or parts thereof), and I make a neural network which simulates the probability that each of those patterns happens.

One avenue consists in discovering a hierarchy of importance in a set of socio-economic variables, i.e. in common stats available from external sources. In this specific approach, I treat empirical datasets of those stats as manifestation of the corresponding state spaces. I assume that the empirical dataset at hand describes one possible state among many. Let me illustrate it with an example: I take a big dataset such as Penn Tables. I assume that the set of observations yielded by the 160ish countries in the database, observed since 1964, is like a complex scenario. It is one scenario among many possible. This specific scenario has played out the way it has due to a complex occurrence of events. Yet, other scenarios are possible.      

To put it simply, datasets made of those typical stats have a strange property, possible to demonstrate by using a neural network: some variables seem to reflect social outcomes of particular interest for the society observed. A neural network pegged on those specific variables as output ones produces very little residual error, and, consequently, stays very similar to the original dataset, as compared to networks pegged on other variables therein.

Under this angle of approach, I ascribe an ontological interpretation to the stats I work with: I assume that each distinct socio-economic variable informs about a distinct phenomenon. Mind you, it is just one possible interpretation. Another one, almost the opposite, claims that all the socio-economic stats we commonly use are essentially facets (or dimensions) of the same, big, compound phenomenon called social existence of humans. Long story short, when I ascribe ontological autonomy to different socio-economic stats, I can use a neural network to establish two hierarchies among these variables: one hierarchy is that of value in desired social outcomes, and another one of epistatic role played by individual variables in the process of achieving those outcomes. In other words, I can assess what the given society is after, and what are the key leverages being moved so as to achieve the outcome pursued.

Another promising avenue of research, which I started exploring quite recently, is that of using an artificial neural network as a complex set of probabilities. Those among you, my readers, who are at least mildly familiar with the mechanics of artificial neural networks, know that a neural network needs empirical data to be transformed in a specific way, called standardization. The most common way of standardizing consists in translating whatever numbers I have at the start into a scale of relative size between 0 and 1, where 1 corresponds to the local maximum. I thought that such a strict decimal fraction comprised between 0 and 1 can spell ‘probability’, i.e. the probability of something happening. This line of logic applies to just some among the indefinitely many datasets we can make. If I have a dataset made of variables such as, for example, GDP per capita, healthcare expenditures per capita, and the average age which a person ends their formal education at, it cannot be really considered in terms of probability. If there is any healthcare system in place, there are always some healthcare expenditures per capita, and their standardized value cannot be really interpreted as the probability of healthcare spending taking place. Still, I can approach the same under a different angle. The average healthcare spending per capita can be decomposed into a finite number of distinct social entities, e.g. individuals, local communities etc., and each of those social entities can be associated with a probability of using any healthcare at all during a given period of time.

That other approach to using neural networks, i.e. as sets of probabilities, has some special edge to it. I can simulate things happening or not, and I can introduce a disturbing factor, which kicks certain pre-defined events into existence or out of it. I have observed that once a phenomenon becomes probable, it is not really possible to kick it out of the system, yet it can yield to newly emerging phenomena. In other words, my empirical observation is that once a given structure of reality is in place, with distinct phenomena happening in it, that structure remains essentially there, and it doesn’t fade even if probabilities attached to those phenomena are random. On the other hand, when I allow a new structure, i.e. another set of distinct phenomena, to come into existence with random probabilities, that new structure will slowly take over a part of the space previously occupied just by the initially incumbent, ‘old’ set of phenomena. All in all, when I treat standardized numerical values – which an artificial neural network normally feeds on – as probabilities of happening rather than magnitudes of something existing anyway, I can simulate the unfolding of entire new structures. This is a structure generating other structures.

I am trying to reverse engineer that phenomenon. Why do I use at all numerical values standardized between 0 and 1, in my neural network? Because this is the interval (type) of values that the function of neural activation needs. I mean there are some functions, such as the hyperbolic tangent, which can work with input variables standardized between – 1 and 1, yet if I want my data to be fully digest for any neural activation function, I’d better standardize it between 0 and 1. Logically, I infer that mathematical functions useful for simulating neural activation are mathematically adapted to deal with sets of probabilities (range between 0 and 1) rather than sets of local magnitudes.    

Discover Social Sciences is a scientific blog, which I, Krzysztof Wasniewski, individually write and manage. If you enjoy the content I create, you can choose to support my work, with a symbolic $1, or whatever other amount you please, via MY PAYPAL ACCOUNT.  What you will contribute to will be almost exactly what you can read now. I have been blogging since 2017, and I think I have a pretty clearly rounded style.

In the bottom on the sidebar of the main page, you can access the archives of that blog, all the way back to August 2017. You can make yourself an idea how I work, what do I work on and how has my writing evolved. If you like social sciences served in this specific sauce, I will be grateful for your support to my research and writing.

‘Discover Social Sciences’ is a continuous endeavour and is mostly made of my personal energy and work. There are minor expenses, to cover the current costs of maintaining the website, or to collect data, yet I want to be honest: by supporting ‘Discover Social Sciences’, you will be mostly supporting my continuous stream of writing and online publishing. As you read through the stream of my updates on https://discoversocialsciences.com , you can see that I usually write 1 – 3 updates a week, and this is the pace of writing that you can expect from me.

Besides the continuous stream of writing which I provide to my readers, there are some more durable takeaways. One of them is an e-book which I published in 2017, ‘Capitalism And Political Power’. Normally, it is available with the publisher, the Scholar publishing house (https://scholar.com.pl/en/economics/1703-capitalism-and-political-power.html?search_query=Wasniewski&results=2 ). Via https://discoversocialsciences.com , you can download that e-book for free.

Another takeaway you can be interested in is ‘The Business Planning Calculator’, an Excel-based, simple tool for financial calculations needed when building a business plan.

Both the e-book and the calculator are available via links in the top right corner of the main page on https://discoversocialsciences.com .

You might be interested Virtual Summer Camps, as well. These are free, half-day summer camps will be a week-long, with enrichment-based classes in subjects like foreign languages, chess, theatre, coding, Minecraft, how to be a detective, photography and more. These live, interactive classes will be taught by expert instructors vetted through Varsity Tutors’ platform. We already have 200 camps scheduled for the summer.   https://www.varsitytutors.com/virtual-summer-camps

What can be wanted only at the collective level

MY EDITORIAL ON YOU TUBE

I am recapitulating on my research regarding cities and their role in our civilization. In the same time, I start preparing educational material for the next semester of teaching, at the university. I am testing somehow new a format, where I precisely try to put science and teaching content literally side by side. The video editorial on You Tube plays an important part here, and I sincerely invite all my readers to watch it.  

I am telling the story of cities once again, from the beginning. Beginning of March 2020. In Poland, we are going into the COVID-19 lockdown. I am cycling through the virtually empty streets of Krakow, my hometown. I slowly digest the deep feeling of weirdness: the last time I saw the city that inanimate, it was during some particularly tense moments in the times of communism, decades ago. A strange question keeps floating on the surface of my consciousness: ‘How many human footsteps per day does this place need to be truly alive?’.

Cities are demographic anomalies. This is particularly visible from space, when satellite imagery serves to distinguish urban areas from rural ones. Cities are abnormally dense agglomerations of man-made architectural structures, paired with just abnormally dense clusters of night-time lights. We, humans, we agglomerate in cities. We purposefully reduce the average social distance, and just as purposefully increase the intensity of our social interactions. Why and how do we do that? The ‘why?’ is an abyssal question. If I attempt to answer it with all the intellectual rigor possible, it is almost impossible to answer. Still, there is hope. I have that little theory of mine – well, not just mine, it is called ‘contextual ethics’ – namely that we truly value the real outcomes we get. In other words, we really want the things which we actually get at the end of the day. This could be a slippery slope. Did Londoners want to have the epidemic of plague, in 1664? I can cautiously say it wasn’t on the top list of their wildest dreams. Yet, acquiring herd immunity and figuring out ways of containing an epidemic outbreak: well, that could be a valuable outcome in the long perspective. That outcome has a peculiar trait: it sort of can be wanted only at the collective level, since it is a collective outcome par excellence. If we pursue an outcome like this one, we are being collectively intelligent. It would be somehow adventurous to try and acquire herd immunity singlehandedly. 

Cities manifest one of the ways we are collectively intelligent. In cities, we get individual outcomes, and collective ones, sort of in layers. Let’s take a simple pattern of behaviour: imitation and personal style. We tend to imitate each other, and frequently, as we are doing so, we love pretending we are reaching the peak or originality. Both imitation and pretention to originality make any sense only when there are other people around, and the more people are there around, the more meaningful it is. Imagine you have a ranch in Texas, like 200 hectares, and in order to imitate anyone, or to pretend being original, you need to drive for 2 hours one way, and then 2 hours back, and, at the end of the day, you have interacted with maybe 20 people.

Our human social structures are machines which make other social structures, and not only sustain the current humans inside. A lot of behavioural patterns make any sense at all when the density of population reaches a reasonably required minimum. Social interactions produce and convey information which our brains use to form new patterns. As I think about it, my take on collective intelligence opens up onto the following claim: we have cities in order to make some social order for the future, and order made of social roles and group identities. We have a given sharpness of social distinction between cities and the countryside, e.g. in terms of density in population, in order to create some social roles and group identities for the future.

We, humans, had discovered – although we might not be aware of what we discovered – that certain types of social interactions (not all of them) can be made into recurrent patterns, and those patterns have the capacity to make new patterns. As long as I just date someone, it is temporary interaction. When I propose, it takes some colours: engagement can turn into marriage (well, it should, technically), thus one pattern of interaction can produce another pattern. When I marry a woman, it opens up a whole plethora of new interactions: parenthood, agreement as for financials (prenuptial contracts or the absence thereof), in-law family relations (parents-in-law, siblings-in-law). Have you noticed that some of the greatest financial fortunes, over centuries, had been accumulated inside family lineages? See? We hit the right pattern of social interactions, and from there we can derive either new copies of the same structure or altogether new structures.

Blast! I have just realized I finally nailed down something which I have been turning around in my mind for months: the logical link between human social structures and artificial neural networks. I use artificial neural networks to simulate collective intelligence in human societies, and I have found one theoretical assumption which I need to put in such a model, namely that consecutive states of society must form a Markov chain, i.e. each individual state must be possible to derive entirely from the preceding state, without any exogenous corrective influence.

Still, I felt I was missing something and now: boom! I figured it out. Once again: among different social interactions there are some which have the property to turn into durable and generative patterns, i.e. they reproduce their general structure in many local instances, each a bit idiosyncratic, yet all based on the same structure. In other words, some among our social interactions have the capacity to be intelligent structures, which experiment with themselves by producing many variations of themselves. This is exactly what artificial neural networks are: they are intelligent structures able to experiment with themselves by generating many local, idiosyncratic variations and thereby nailing down the variation which minimizes error in achieving a desired outcome.

When I use an artificial neural network to simulate social change, I implicitly assume that the social change in question is a Markov chain of states, and that the society under simulation has some structural properties which remain consistent over all the Markov chain of states. Now, I need to list the structural properties of artificial neural networks I use in my research, and to study the conditions of their stability. An artificial neural network is a sequence of equations being run in a loop. Structure of the network is given by each equation separately, and by their sequential order. I am going to break down that logical structure once again and pass its components in review. Just a general, introductory remark: I use really simple neural networks, which fall under the general category of multi-layer perceptron. This is probably the simplest that can be in terms of AI, and this is the logic which I connect to collective intelligence in human societies.

The most fundamental structure of an artificial neural network is given by the definition of input variables – the neural stimuli – and their connection to the output variable(s). I used that optional plural, i.e. the ‘(s)’ suffix, because the basic logic of an artificial neural network assumes defining just one output variable, whilst it is possible to construe that output as the coefficient of a vector. In other words, any desired outcome given by one number can be seen as being derived from a collection of numbers. I hope you remember from your math classes in high school that the Pythagorean theorem, I mean the a2 + b2 = c2 one, has a more general meaning, beyond the simple geometry of a right-angled triangle. Any positive number we observe – our height in centimetres (or in feet and inches), the right amount of salt to season shrimps etc. – any of those amounts can be interpreted as the square root of the sum of squares of two other numbers. I mean, any x > 0 is x = (y2 + x2)0,5. Logically, those shady y and z can be seen, in turn, as derived, Pythagorean way, from even shadier and more mysterious entities. In other words, it is plausible to assume that x = (y2 + x2)0,5 = {[(a2 + b2)0,5]2 + [(c2 + d2)0,5]2}0,5 etc.

As a matter of fact, establishing an informed distinction between input variables on the one hand, and the output variable on the other hand is the core and the purpose of my method. I take a handful of variables, informative about a society or a market, and I make as many alternative neural networks as there are variables. Each alternative network has the same logical structure, i.e. the same equations in the same sequence, but is pegged on a different variable as its output. At some point, I have the real human society, i.e. the original, empirical dataset, and as many alternative versions thereof as there are variables in the dataset. In other words, I have a structure and a finite number of experiments with that structure. This is the methodology I used, for example, in my paper on energy efficiency.

There are human social structures which can make other social structures, by narrowing down, progressively, the residual error generated when trying to nail down a desired outcome and experimenting with small variations of the structure in question. Those structures need abundant social interactions in order to work. An artificial neural network which has the capacity to stay structurally stable, i.e. which has the capacity to keep the Euclidean distance between variables inside a predictable interval, can be representative for such a structure. That predictable interval of Euclidean distance corresponds to predictable behavioural coupling, the so-called correlated coupling: social entity A reacts to what social entity B is doing, and this reaction is like music, i.e. it involves moving along a scale of response in a predictable pattern.

I see cities as factories of social roles. The intensity of social interactions in cities works like a social engine. New businesses emerge, new jobs form in the labour market. All these require new skillsets and yet those skillsets are expected to stop being entirely new and to become somehow predictable and reliable, whence the need for correspondingly new social roles in training and education for those new skills. As people endowed with those new skills progressively take over business and jobs, even more novel skillsets emerge and so the wheel of social change spins. The peculiar thing about social interactions in cities are those between young people, i.e. teenagers and young adults up to the age of 25. Those interactions have a special trait, just as do the people involved: their decision-making processes are marked by significantly greater an appetite for risk and immediate gratification, as opposed to more conservative and more perseverant behavioural patterns in older adults.

Cities allow agglomeration of people very similar as regards the phase of their personal lifecycle, and, in the same time, very different in their cultural background. People mix a lot inside generations. Cities produce a lot of social roles marked with a big red label ‘Only for humans below 30!’, and, in the same time, lots of social roles marked ‘Below 40, don’t even think about it!’. Please, note that I define a generation in sociological terms, i.e. as a cycle of about 20 ÷ 25 years, roughly corresponding to the average age of reproduction (I know, first parenthood sounds kind’a more civilized). According to this logic, I am one generation older than my son.

That pattern of interactions is almost the exact opposite of rural villages and small towns, where people interact much more between generations and less inside generations. Social roles form as ‘Whatever age you are between 20 and 80, you do this’. As we compare those two mechanisms of role-formation, in turns out that cities are inherently prone to creating completely new sets of social roles for each new generation of people coming with the demographic tide. Cities facilitate innovation at the behavioural level. By innovation, I mean the invention of something new combined with a mechanism of diffusing that novelty across the social system.

These are some of my thoughts about cities. How can I play them out into my teaching? I start with a staple course of mine: microeconomics. Microeconomics sort of nicely fit with the topic of cities, and I don’t even have to prove it, ‘cause Adam Smith did. In his ‘Inquiry Into The Nature And Causes of The Wealth of Nations’, Book I, Chapter III, entitled ‘That The Division Of Labour Is Limited By The Extent Of The Market’, he goes: ‘[…] There are some sorts of industry, even of the lowest kind, which can be carried on nowhere but in a great town. A porter, for example, can find employment and subsistence in no other place. A village is by much too narrow a sphere for him; even an ordinary market-town is scarce large enough to afford him constant occupation. In the lone houses and very small villages which are scattered about in so desert a country as the highlands of Scotland, every farmer must be butcher, baker, and brewer, for his own family. In such situations we can scarce expect to find even a smith, a carpenter, or a mason, within less than twenty miles of another of the same trade. The scattered families that live at eight or ten miles distance from the nearest of them, must learn to perform them- selves a great number of little pieces of work, for which, in more populous countries, they would call in the assistance of those workmen. Country workmen are almost everywhere obliged to apply themselves to all the different branches of industry that have so much affinity to one another as to be employed about the same sort of materials. A country carpenter deals in every sort of work that is made of wood; a country smith in every sort of work that is made of iron. The former is not only a carpenter, but a joiner, a cabinet-maker, and even a carver in wood, as well as a wheel-wright, a plough-wright, a cart and waggon-maker. The employments of the latter are still more various. It is impossible there should be such a trade as even that of a nailer in the remote and inland parts of the highlands of Scotland. Such a workman at the rate of a thousand nails a-day, and three hundred working days in the year, will make three hundred thousand nails in the year. But in such a situation it would be impossible to dispose of one thousand, that is, of one day’s work in the year […]’.     

Microeconomics can be seen as a science of how some specific social structures, strongly pegged in the social distinction between cities and the countryside, reproduce themselves in time, as well as produce other social structures. I know, this definition does not really seem to fall close to the classical, Marshallian graph of two curves, i.e. supply and demand, crossing nicely in the point of equilibrium. ‘Does not seem to…’ is distinct from ‘does not’. Let’s think a moment. The local {Supply <> Demand} equilibrium is a state of deals being closed at recurrent, predictable a price. One of the ways to grasp the equilibrium price consists in treating it as the price which clears all the surplus stock of goods in the market. It is the price which people agree upon, at the end of the day. Logically, there is an underlying social structure which allows such a recurrent, equilibrium-making bargaining process. This structure reproduces itself in n copies, over and over again, and each such copy is balanced on different a coupling between equilibrium price and equilibrium product.

Here comes something I frequently remind to those of my students who have enough grit to read any textbook in economics: those nice curves in the Marshallian graph, namely demand and supply, don’t really exist. They represent theoretical states at best, and usually these are more in the purely hypothetical department. We just guess that social reality is being sort bent along them. The thing that really exists, here and now, is the equilibrium price that we strike our deals at, and the corresponding volumes of business we do at this price. What really exists in slightly longer a perspective is the social structure able to produce local equilibriums between supply and demand, which, in turn, requires people in that structure recurrently producing economically valuable, tradable surpluses of physical goods and/or marketable skills.

Question: how can I know there is any point in producing an economically valuable surplus of anything? Answer: where other people make me understand they would gladly acquire said surplus. Mind you, although markets are mostly based on money, there are de facto markets without straightforward monetary payment. The example which comes to my mind is a structure which I regularly observe, every now and then, in people connected to business and politics, especially in Warsaw, the capital of my home country, Poland. Those guys (and gals) sometimes call it ‘the cooperative of information and favour’. You slightly facilitate a deal I want to strike, and I remember that, and later I facilitate the deal you want to strike. We don’t do business together, strictly speaking, we just happen to have mutual leverage on each other’s business with third parties. I observed that pattern frequently, and the thing really works as a market of favours based on social connections and individual knowledge. No one exchanges money (that could be completely accidentally perceived as corruption, and that perfectly accidental false perception could occur in a prosecutor, and no one wants to go to jail), and yet this is a market. There is an equilibrium price for facilitating a $10 million deal in construction. That equilibrium price might be the facilitation of another $10 million deal in construction, or the facilitation of someone being elected to the city council. By the way, that market of favours really stirs it up when some kind of elections is upcoming.

Anyway, the more social interactions I enter into over a unit of time, the more chances I have to spot some kind of economically valuable surplus in what I do and make. The more such social interactions are possible in the social structure of my current residence, the better. Yes, cities allow that. The next step is from those general thoughts to a thread of teaching and learning. I can see a promising avenue in the following scheme:

>>> Step 1: I choose or ask my students to choose any type of normal, recurrent social interaction. It can be interesting to film a bit of city life, just like that, casually, with a phone, and then use it as empirical material.

>>> Step 2: Students decompose that interaction into layers of different consistency, i.e. separate actions and events which change quickly and frequently from those which last and recur.

>>> Step 3: Students connect the truly recurrent actions and events to an existing market of goods or marketable skills. They describe, with as much detail as possible, how recurrent interactions translate into local states of equilibrium.

Good. One carryover done, namely into microeconomics, I try another one, into another one of my basic courses at the university: fundamentals of management. There is something I try to tell my students whenever I start this course, in October: ‘Guys, I can barely outline what management is. You need to go out there, into that jungle, and then you learn. I can tell you what the jungle looks like, sort of in general’. Social interactions and social roles in management spell power, hierarchy, influence, competition and cooperation on the top of all that. Invariably, students ask me: ‘But, sir, wouldn’t it be simpler just to cooperate, without all those games of power and hierarchy inside the organization?’. My answer is that yes, indeed, it would be simpler to the point of being too simple, i.e. simplistic. Let’s think. When we rival inside the organization, we need to interact. There is no competition without interaction. The more we compete, the more we interact, and the more personal resources we need to put in that interaction.

Mind you, competition is not the only way to trigger intense, abundant human interaction. Camaraderie, love, emotional affiliation to a common goal – they all can do the same job, and they tend to be more pleasant than interpersonal competition. There is a caveat, though: all those forms of action-generating emotional bonds between human beings tend to be fringe phenomena. They happen rarely. With how many people, in our existence, can we hope to develop a bond of the type ‘I have your back and you have my back, no matter what’? Just a few, at best. Quite a number of persons walk through their entire life without ever experiencing this type of connection. On the other hand, competition is a mainstream phenomenon. You put 5 random people in any durable social relation – business, teamwork, art etc. – and they are bound to develop competitive behaviour. Competition happens naturally, very frequently, and can trigger tacit coordination when handled properly.

Yes, right, you can legitimately ask what does it mean to handle competition properly. As a kid, or in your teenage years, have you ever played a competitive game, such as tennis, basketball, volleyball, chess, computer games, or even plain infantile fighting? Do you know that situation when other people want to play with you because you sometimes score and win, but kind of not all the time and not at all price? That special state when you get picked for the next game, and you like the feeling? Well, that’s competition handled properly. You mobilise yourself in rivalry with other people, but you keep in mind that the most fundamental rule of any competitive game is to keep the door open for future games.      

Thus, I guess that teaching management in academia, which I very largely do, may consist in showing my students how to compete constructively inside an organisation, i.e. how to be competitive and cooperative in the same time. I can show internal competition and cooperation in the context of a specific business case. I already tend to work a lot, in class, with cases such as Tesla, Netflix, Boeing or Walt Disney. I can use their business description, such as can be found in an annual report, to reconstruct an organisational environment where competition and cooperation can take place. The key learning for management students is to understand what traits of that environment enable constructive competition, likely to engender cooperation, as opposed to situations marked either with destructive competition or with a destructive absence thereof, on the other hand.

Discover Social Sciences is a scientific blog, which I, Krzysztof Wasniewski, individually write and manage. If you enjoy the content I create, you can choose to support my work, with a symbolic $1, or whatever other amount you please, via MY PAYPAL ACCOUNT.  What you will contribute to will be almost exactly what you can read now. I have been blogging since 2017, and I think I have a pretty clearly rounded style.

In the bottom on the sidebar of the main page, you can access the archives of that blog, all the way back to August 2017. You can make yourself an idea how I work, what do I work on and how has my writing evolved. If you like social sciences served in this specific sauce, I will be grateful for your support to my research and writing.

‘Discover Social Sciences’ is a continuous endeavour and is mostly made of my personal energy and work. There are minor expenses, to cover the current costs of maintaining the website, or to collect data, yet I want to be honest: by supporting ‘Discover Social Sciences’, you will be mostly supporting my continuous stream of writing and online publishing. As you read through the stream of my updates on https://discoversocialsciences.com , you can see that I usually write 1 – 3 updates a week, and this is the pace of writing that you can expect from me.

Besides the continuous stream of writing which I provide to my readers, there are some more durable takeaways. One of them is an e-book which I published in 2017, ‘Capitalism And Political Power’. Normally, it is available with the publisher, the Scholar publishing house (https://scholar.com.pl/en/economics/1703-capitalism-and-political-power.html?search_query=Wasniewski&results=2 ). Via https://discoversocialsciences.com , you can download that e-book for free.

Another takeaway you can be interested in is ‘The Business Planning Calculator’, an Excel-based, simple tool for financial calculations needed when building a business plan.

Both the e-book and the calculator are available via links in the top right corner of the main page on https://discoversocialsciences.com .

You might be interested Virtual Summer Camps, as well. These are free, half-day summer camps will be a week-long, with enrichment-based classes in subjects like foreign languages, chess, theatre, coding, Minecraft, how to be a detective, photography and more. These live, interactive classes will be taught by expert instructors vetted through Varsity Tutors’ platform. We already have 200 camps scheduled for the summer.   https://www.varsitytutors.com/virtual-summer-camps