Cool discovery

Writing about me learning something helps me to control emotions involved into the very process of learning. It is like learning on the top of learning. I want to practice programming, in Python, the learning process of an intelligent structure on the basis of negotiation techniques presented in Chris Voss’s book ‘Never Split the Difference’. It could be hard to translate a book into an algorithm, I know. I like hard stuff, and I am having a go at something even harder: translating two different books into one algorithm. A summary, and an explanation, are due. Chris Voss develops, in the last chapter of his book, a strategy of negotiation based on the concept of Black Swan, as defined by Nassim Nicholas Taleb in his book ‘The black swan. The impact of the highly improbable’ (I am talking about the revised edition from 2010, published with Penguin Books, ISBN 9780812973815).

Generally, Chriss Voss takes a very practical drift in his method of negotiation. By ‘practical’, I mean that he presents techniques which he developed and tested in hostage negotiations with FBI, where he used to be the chief international hostage negotiator. He seems to attach particular importance to all the techniques which allow unearthing the non-obvious in negotiations: hidden emotions, ethical values, and contextual factors with strong impact on the actual negotiation. His method is an unusual mix of rigorous cognitive approach with a very emotion-targeting thread. His reference to Black Swans, thus to what we don’t know we don’t know, is an extreme version of that approach. It consists in using literally all our cognitive tools to uncover events and factors in the game which we even didn’t initially know were in the game.

Translating a book into an algorithm, especially for a newbie of programming such as I am, is hard. Still, in the case of ‘Never Split the Difference’, it is a bit easier because of the very game-theoretic nature of the method presented. Chriss Voss attaches a lot of importance to taking our time in negotiations, and to making our counterpart make a move rather than overwhelming them with our moves. All that is close to my own perspective and makes the method easier to translate into a functional sequence where each consecutive phase depends on the preceding phase.

Anyway, I assume that a negotiation is an intelligent structure, i.e. it is an otherwise coherent and relatively durable structure which learns by experimenting with many alternative versions of itself. That implies a lot. Firstly, it implies that the interaction between negotiating parties is far from being casual and accidental: it is a structure, it has coherence, and it is supposed to last by recurrence. Secondly, negotiations are supposed to be learning much more than bargaining and confrontation. Yes, it is a confrontation of interests and viewpoints, nevertheless the endgame is learning. Thirdly, an intelligent structure experiments with many alternative versions of itself and learns by assessing the fitness of those versions in coping with a vector of external stressors. Therefore, negotiating in an intelligent structure means that, consciously or unconsciously, we, mutual counterparts in negotiation, experiment together with many alternative ways of settling our differences, and we are essentially constructive in that process.

Do those assumptions hold? I guess I can somehow verify them by making first steps into programming a negotiation.  I already know two ways of representing an intelligent structure as an algorithm: in the form of a loop (primitive, tried it, does not fully work, yet has some interesting basic properties), or in the form of a class, i.e. a complex logical structure which connects names to numbers.

When represented as a loop, a negotiation is a range of recurrent steps, where the same action is performed a given number of times. Looping means that a negotiation can be divided into a finite number of essentially identical steps, and the endgame is the cumulative output of those steps. With that in mind, I can see that a loop is not truly intelligent a structure. Intelligent learning requires more than just repetition: we need consistent assessment and dissemination of new knowledge. Mind you, many negotiations can play out as ritualized loops, and this is when they are the least productive. Under the condition of unearthing Black Swans hidden in the contentious context of the negotiation, the whole thing can play out as an intelligent structure. Still, many loop-like negotiations which recurrently happen in a social structure, can together form an intelligent structure. Looks like intelligent structures are fractal: there are intelligent structures inside intelligent structures etc. Intelligent social structures can contain chains of ritualized, looped negotiations, which are intelligent structures in themselves.   

Whatever. I program. When I try to sift out the essential phenomenological categories out of the Chris Voss’s book ‘Never Split the Difference’, I get to the following list of techniques recommended by Chriss Voss:

>> Mirroring – I build emotional rapport by just repeating the last three words of each big claim phrased out by my counterpart.

 >> Labelling – I further build emotional rapport by carefully and impersonally naming emotions and aspirations in my counterpart.

>> Open-ended questions – I clarify claims and disarm emotional bottlenecks by asking calibrated open questions such as ‘How can we do X,Y, Z?’ or ‘What do we mean by…?’ etc.

>> Claims – I state either what I want or what I want my counterpart to think I want

Those four techniques can be used in various shades and combinations to accomplish typical partial outcomes in negotiation, namely: a) opportunities for your counterpart to say openly ‘No’ b) agreement in principle c) guarantee of implementation d) Black Swans, i.e. unexpected attributes of the situation which turn the negotiation in a completely different, favourable direction.

I practice phrasing it out as a class in Python. Here is what I came up with and which my JupyterLab compiler swallows nicely without yielding any errors:

Mind you, I don’t know how exactly it works, algorithmically. I am a complete newbie to programming classes in Python, and my first goal is to have the grammar right, and thus not to have to deal with those annoying, salmon-pink-shaded messages of error.

Before I go further into programming negotiation as a class, I feel like I need to go back to my primitive skills, i.e. to programming loops, in order to understand the mechanics of the class I have just created. Each ‘self’ in the class is a category able to have many experimental versions of itself. I try the following structure:

As you can see, I received an error of non-definition. I have not defined the dataset which I want to use for appending my lists. Such a dataset would contain linguistic strings, essentially. Thus, the type of datasets I am operating with, here, are sets of linguistic strings, thus sets of objects. An intelligent structure representative for negotiation is an algorithm for processing natural language. Cool discovery.

Leave a Reply