The fine details of theory

I keep digging. I keep revising that manuscript of mine – ‘Climbing the right hill – an evolutionary approach to the European market of electricity’ – in order to resubmit it to Applied Energy. Some of my readers might become slightly fed up with that thread. C’mon, man! How long do you mean to work on that revision? It is just an article! Yes, it is just an article, and I have that thing in me, those three mental characters: the curious ape, the happy bulldog, and the austere monk. The ape is curious, and it almost instinctively reaches for interesting things. My internal bulldog just loves digging out tasty pieces and biting into bones. The austere monk in me observes the intellectual mess, which the ape and the bulldog make together, and then he takes that big Ockham’s razor, from the recesses of his robe, and starts cutting bullshit out. When the three of those start dancing around a topic, it is a long path to follow, believe me.

In this update, I intend to structure the theoretical background of my paper. First, I restate the essential point of my own research, which I need and want to position in relation to other people’s views and research. I claim that energy-related policies, including those with environmental edge, should assume that whatever we do with energy, as a civilisation, is a by-product of actions purposefully oriented on other types of outcomes. Metaphorically, when I claim that a society should take the shift towards renewable energies as its chief goal, and take everything else as instrumental, is like saying that the chief goal of an individual should be to keep their blood sugar firmly at 80,00, whatever happens. What’s the best way to achieving it? Putting yourself in a clinic, under permanent intravenous nutrition, and stop experimenting with that thing people call ‘food’, ‘activity’, ‘important things to do’. Anyone wants to do it? Hardly anyone, I guess. The right level of blood sugar can be approximately achieved as balanced outcome of a proper lifestyle, and can serve as a gauge of whether our actual lifestyle is healthy.

Coming back from my nutritional metaphor to energy-related policies, there is no historical evidence that any human society has ever achieved any important change regarding the production of energy or its consumption, by explicitly stating ‘From now on, we want better energy management’. The biggest known shifts in our energy base happened as by-products of changes oriented on something else. In Europe, my home continent, we had three big changes. First, way back in the day, like starting from the 13th century, we harnessed the power of wind and that of water in, respectively, windmills and watermills. That served to provide kinetic energy to grind cereals into flour, which, in turn, served to feed a growing urban population. Windmills and watermills brought with them a silent revolution, which we are still wrapping our minds around. By the end of the 19th century, we started a massive shift towards fossil fuels. Why? Because we expected to drive Ferraris around, one day in the future? Not really. We just went terribly short on wood. People who claim that Europe should recreate its ‘ancestral’ forests deliberately ignore the fact that hardly anyone today knows what those ancestral forests should look like. Virtually all the forests we have today come from massive replantation which took place starting from the beginning of the 20th century. Yes, we have a bunch of 400-year-old oaks across the continent, but I dare reminding that one oak is not exactly a forest.

The civilisational change which I think is going on now, in our human civilisation, is the readjustment of social roles, and of the ways we create new social roles, in the presence of a radical demographic change: unprecedently high headcount of population, accompanied by just as unprecedently low rate of demographic growth. For hundreds of years, our civilisation has been evolving as two concurrent factories: the factory of food in the countryside, and the factory of new social roles in cities. Food comes the best when the headcount of humans immediately around is a low constant, and new social roles burgeon the best when humans interact abundantly, and therefore when they are tightly packed together in a limited space. The basic idea of our civilisation is to put most of the absolute demographic growth into cities and let ourselves invent new ways of being useful to each other, whilst keeping rural land as productive as possible.

That thing had worked for centuries. It had worked for humanity that had been relatively small in relation to available space and had been growing quickly into that space. That idea of separating the production of food from the creation of social roles and institutions was adapted precisely to that demographic pattern, which you can still find vestiges of in some developing countries, as well as in emerging markets, with urban population several dozens of times denser than the rural one, and cities that look like something effervescent. These cities grow bubbles out of themselves, and those bubbles burst just as quickly. My own trip to China showed me how cities can be truly alive, with layers and bubbles inside them. One is tempted to say these cities are something abnormal, as compared to the orderly, demographically balanced urban entities in developed countries. Still, historically, this is what cities are supposed to look like.

Now, something is changing. There is more of us on the planet than it has ever been but, at the same time, we experience unprecedently low rate of demographic growth. Whilst we apparently still manage to keep total urban land on the planet at a constant level (https://data.worldbank.org/indicator/AG.LND.TOTL.UR.K2 ), we struggle with keeping the surface of agricultural land up to our needs (https://data.worldbank.org/indicator/AG.LND.AGRI.ZS ). As in any system tilted out of balance, weird local phenomena start occurring, and the basic metrics pertinent to the production and consumption of energy show an interesting pattern. When I look at the percentage participation of renewable sources in the total consumption of energy (https://data.worldbank.org/indicator/EG.FEC.RNEW.ZS ), I see a bumpy cycle which looks like learning with experimentation. When I narrow down to the participation of renewables in the total consumption of electricity ( https://data.worldbank.org/indicator/EG.ELC.RNEW.ZS), what I see is a more pronounced trend upwards, with visible past experimentation. The use of nuclear power to generate electricity (https://data.worldbank.org/indicator/EG.ELC.NUCL.ZS) looks like a long-run experiment, which now is in its phase of winding down.

Now, two important trends come into my focus. Energy efficiency, defined as average real output per unit of energy use (https://data.worldbank.org/indicator/EG.GDP.PUSE.KO.PP.KD) quite unequivocal a trend upwards. Someone could say ‘Cool, we purposefully make ourselves energy efficient’. Still, when we care to have a look at the coefficient of energy consumed per person per year (https://data.worldbank.org/indicator/EG.USE.PCAP.KG.OE), a strong trend upwards appears, with some deep bumps in the past. When I put those two trends back to back, I conclude that what we really max out on is the real output of goods and services in our civilisation, and energy efficiency is just a means to that end.

It is a good moment to puncture an intellectual balloon. I can frequently see and hear people argue that maximizing real output, in any social entity or context, is a manifestation of stupid, baseless greed and blindness to the truly important stuff. Still, please consider the following line of logic. We, humans, interact with the natural environment, and interact with each other.  When we interact with each other a lot, in highly dense networks of social relations, we reinforce each other’s learning, and start spinning the wheel of innovation and technological change. Abundant interaction with each other gives us new ideas for interacting with the natural environment.

Cities have peculiar properties. Firstly, by creating new social roles through intense social interaction, they create new products and services, and therefore new markets, connected in chains of value added. This is how the real output of goods and services in a society becomes a complex, multi-layered network of technologies, and this is how social structures become self-propelling businesses. The more complexity in social roles is created, the more products and services emerge, which brings the development in greater a number of markets. That, in turn, gives greater a real output, greater income per person, which incentivizes to create new social roles etc. This how social complexity creates the phenomenon called economic growth.

The phenomenon of economic growth, thus the quantitative growth in complex, networked technologies which emerge in relatively dense human settlements, has a few peculiar properties. You can’t see it, you can’t touch it, and yet you can immediately feel when its pace changes. Economic growth is among the most abstract concepts of social sciences, and yet living in a society with real economic growth at 5% per annum is like a different galaxy when compared to living in a place where real economic growth is actually a recession of -5%. The arithmetical difference is just 10 percentage points, around the top of something underlying which makes the base of 1. Still, lives in those two contexts are completely different. At +5% in real economic growth, starting a new business is generally a sensible idea, provided you have it nailed down with a business plan. At – 5% a year, i.e. in recession, the same business plan can be an elaborate way of committing economic and financial suicide. At +5%, political elections are usually won by people who just sell you the standard political bullshit, like ‘I will make your lives better’ claimed by a heavily indebted alcoholic with no real career of their own. At -5%, politics start being haunted by those sinister characters, who look and sound like evil spirits from our dreams and claim they ‘will restore order and social justice’.

The society which we consider today as normal is a society of positive real economic growth. All the institutions we are used to, such as healthcare systems, internal security, public administration, education – all that stuff works at least acceptably smoothly when complex, networked technologies of our society have demonstrable capacity to increase their real economic output. That ‘normal’ state of society is closely connected to the factories of social roles which we commonly call ‘cities’. Real economic growth happens when the amount of new social roles – fabricated through intense interactions between densely packed humans – is enough for the new humans coming around. Being professionally active means having a social role solid enough to participate in the redistribution of value added created in complex technological networks. It is both formal science and sort of accumulated wisdom in governance that we’d better have most of the adult, able bodied people in that state of professional activity. A small fringe of professionally inactive people is somehow healthy a margin of human energy free to be professionally activated, and when I say ‘small’, it is like no more than 5% of the adult population. Anything above becomes both a burden and a disruption to social cohesion. Too big a percentage of people with no clear, working social roles makes it increasingly difficult to make social interactions sufficiently abundant and complex to create enough new social roles for new people. This is why governments of this world attach keen importance to the accurate measurement of the phenomenon quantified as ‘unemployment’.  

Those complex networks of technologies in our societies, which have the capacity to create social roles and generate economic growth, work their work properly when we can transact about them, i.e. when we have working markets for the final economic goods produced with those technologies, and for intermediate economic goods produced for them. It is as if the whole thing worked when we can buy and sell things. I was born in 1968, in a communist country, namely Poland, and I can tell you that in the absence of markets the whole mechanism just jams, progressively to a halt. Yes, markets are messy and capricious, and transactional prices can easily get out of hand, creating inflation, and yet markets give those little local incentives needed to get the most of human social roles. In the communist Poland, I remember people doing really strange things, like hoarding massive inventories of refrigerators or women’s underwear, just to create some speculative spin in an ad hoc, semi-legal or completely illegal market. It looks as if people needed to market and transact for real, amidst the theoretically perfectly planned society.   

Anyway, economic growth is observable through big sets of transactions in product markets, and those transactions have two attributes: quantities and prices AKA Q an P. It is like Q*P = ∑qi*pi. When I have – well, when we have – that complex network of technologies functionally connected to a factory of social roles for new humans, that thing makes ∑qi*pi, thus a lot of local transactions with quantities qi, at prices pi. The economic growth I have been so vocal about in the last few paragraphs is the real growth, i.e. in quantity Q = ∑qi. On the long run, what I am interested in, and my government is interested in, is to reasonably max out on ∆ Q = ∆∑qi. Quantities change slowly and quite predictably, whilst prices tend to change quickly and, mostly on the short term, chaotically. Measuring accurately real economic growth involving kicking the ‘*pi’ component out of the equation and extracting just ∆ Q = ∆∑qi. Question: why bothering with the observation of Q*P = ∑qi*pi when the real thing we need is just ∆ Q = ∆∑qi? Answer: because there is no other way. Complex networks of technologies produce economic growth by creating increasing diversity in social roles in concurrence with increasing diversity in products and their respective markets. No genius has come up, so far, with a method to add up, directly, the volume of visits in hairdresser’s salons with the volume of electric vehicles made, and all that with the volume of energy consumed.

I have ventured myself far from the disciplined logic of revision in my paper, for resubmitting it. The logical flow required in this respect by Applied Energy is the following: introduction first, method and material next, theory follows, and calculations come after. The literature which I refer to in my writing needs to have two dimensions: longitudinal and lateral. Laterally, I divide other people’s publications into three basic groups: a) standpoints which I argue with b) methods and assumptions which I agree with and use to support my own reasoning, and c) viewpoints which sort of go elsewhere, and can be interesting openings into something even different from what I discuss. Longitudinally, the literature I cite needs, in the first place, to open up on the main points of my paper. This is ‘Introduction’. Publications which I cite here need to point at the utility of developing the line of research which I develop. They need to convey strong, general claims which sort of set my landmarks.

The section titled ‘Theory’ is supposed to provide the fine referencing of my method, so as to both support the logic thereof, and to open up on the detailed calculations I develop in the following section. Literature which I bring forth here should contain specific developments, both factual and methodological, something like a conceptual cobweb. In other words, ‘Introduction’ should be provocative, whilst ‘Theory’ transforms provocation into a structure.

Among the recent literature I am passing in review, three papers come forth as provocative enough for me to discuss them in the introduction of my article:  Andreoni 2020[1], Koponen & Le Net 2021[2]. The first of the three on that list, namely the paper by professor Valeria Andreoni, well in the mainstream of the MuSIASEM methodology (Multi-scale Integrated Analysis of Societal and Ecosystem Metabolism), sets an important line of theoretical debate, namely the arguable imperative to focus energy-related policies, and economic policies in general, on two outcomes, namely on maximizing energy efficiency (i.e. maximizing the amount of real output per unit of energy consumption), and on minimizing cross sectional differences between countries as regards energy efficiency. Both postulates are based on the assumption that energy efficiency of national economies corresponds to the metabolic efficiency of living organisms, and that maxing out on both is an objective evolutionary purpose in both cases. My method has the same general foundations as MuSIASEM. I claim that societies can be studied similarly to living organisms.

At that point, I diverge from the MuSIASEM framework: instead of focusing on the metabolism of such organically approached societies, I pay attention to their collective cognitive processes, their collective intelligence. I claim that human societies are collectively intelligent structures, which learn by experimenting with many alternative versions of themselves whilst staying structurally coherent. From that assumption, I derive two further claims. Firstly, if we reduce disparities between countries with respect to any important attribute of theirs, including energy efficiency, we kick out of the game a lot of opportunities for future learning: the ‘many alternative versions’ part of the process is no more there. Secondly, I claim there is no such thing as objective evolutionary purpose, would it be maximizing energy efficiency or anything else. Evolution has no purpose; it just has the mechanism of selection by replication. Replication of humans is proven to happen the most favourably when we collectively learn fast and make a civilisation out of that learning.

Therefore, whilst having no objective evolutionary purpose, human societies have objective orientations: we collectively attempt to optimize some specific outcomes, which have the attribute to organize our collective learning the most efficiently, in a predictable cycle of, respectively, episodes marked with large errors in adjustment, and those displaying much smaller errors in that respect.

From that theoretical cleavage between my method and the postulates of the MuSIASEM framework, I derive two practical claims as regards economic policies, especially as regards environmentally friendly energy systems. Looking for homogeneity between countries is a road to nowhere, for one. Expecting that human societies will purposefully strive to maximize their overall energy efficiency is unrealistic a goal, and therefore it is a harmful assumption in the presence of serious challenges connected to climate change, for two. Public policies should explicitly aim for disparity of outcomes in technological race, and the race should be oriented on outcomes which are being objectively pursued by human societies.

Whilst disagreeing with professor Valeria Andreoni on principles, I find her empirical findings highly interesting. Rapid economic change, especially the kind of change associated with crises, seems to correlate with deepening disparities between countries in terms of energy efficiency. In other words, when large economic systems need to adjust hard and fast, they sort of play their individual games separately as regards energy efficiency. Rapid economic adjustment under constraint is conducive to creating a large discrepancy of alternative states in what energy efficiency can possibly be, in the context of other socio-economic outcomes, and, therefore, more material is there for learning collectively by experimenting with many alternative versions of ourselves.

Against that theoretical sketch, I place the second paper which I judge worth to introduce with: Koponen, K., & Le Net, E. (2021): Towards robust renewable energy investment decisions at the territorial level. Applied Energy, 287, 116552.  https://doi.org/10.1016/j.apenergy.2021.116552 . I chose this one because it shows a method very similar to mine: the authors build a simulative model in Excel, where they create m = 5000 alternative futures for a networked energy system aiming at optimizing 5 performance metrics. The model was based on actual empirical data as for those variables, and the ‘alternative futures’ are, in other words, 5000 alternative states of the same system. Outcomes are gauged with the so-called regret analysis, where the relative performance in a specific outcome is measured as the residual difference between its local value, and, respectively, its general minimum or maximum, depending on whether the given metric is something we strive to maximize (e.g. capacity), or to minimize (e.g. GHG).

I can generalize on the method presented by Koponen and Le Net, and assume that any given state of society can be studied as one among many alternative states of said society, and the future depends very largely on how this society will navigate through the largely uncharted waters of itself being in many alternative states. Navigators need a star in the sky, to find their North, and so do societies. Koponen and Le Net simulate civilizational navigation under the constraint of four stars, namely the cost of CO2, the cost of electricity, the cost of natural gas, and the cost of biomass. I generalize and say that experimentation with alternative versions of us being collectively intelligent can be oriented on optimizing many alternative Norths, and the kind of North we will most likely pursue is the kind which allows us to learn efficiently how to go from one alternative future to another.

Good. This is my ‘Introduction’. It sets the tone for the method I present in the subsequent section, and the method opens up on the fine details of theory.


[1] Andreoni, V. (2020). The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis. Energy Policy, 139, 111304. https://doi.org/10.1016/j.enpol.2020.111304

[2] Koponen, K., & Le Net, E. (2021): Towards robust renewable energy investment decisions at the territorial level. Applied Energy, 287, 116552.  https://doi.org/10.1016/j.apenergy.2021.116552  .

The traps of evolutionary metaphysics

I think I have moved forward in the process of revising my manuscript ‘Climbing the right hill – an evolutionary approach to the European market of electricity’, as a resubmission Applied Energy . A little digression: as I provide, each time, a link to the original form of that manuscript, my readers can compare the changes I develop on, in those updates, with the initial flow of logic.

I like discussing important things in reverse order. I like starting from what apparently is the end and the bottom line of thinking. From there, I go forward by going back, sort of. In an article, the end is the conclusion, possibly summarized in 5 ÷ 6 bullet points and optionally coming together with a graphical abstract. I conclude this specific piece of research by claiming that energy-oriented policies, e.g. those oriented on developing renewable sources, could gain in efficiency by being: a) national rather than continental or global b) explicitly oriented on optimizing the country’s terms of trade in global supply chains c) just as explicitly oriented on the development of some specific types of jobs whilst purposefully winding down other types thereof.

I give twofold a base for that claim. Firstly, I have that stylized general observation about energy-oriented policies: globally or continentally calibrated policies, such as, for example, the now famous Paris Climate Agreement, work so slow and with so much friction that they become ineffective for any practical purpose, whilst country-level policies are much more efficient in the sense that one can see a real transition from point A to point B. Secondly, my own research – which I present in this article under revision – brings evidence that national social structures orient themselves on optimizing their terms of trade and their job markets in priority, whilst treating the energy-related issues as instrumental. That specific collective orientation seems, in turn, to have its source in the capacity of human social structures to develop a strongly cyclical, predictable pattern of collective learning precisely in relation to the terms of trade, and to the job market, whilst collective learning oriented on other measurable variables, inclusive of those pertinent to energy management, is much less predictable.

That general conclusion is based on quantitative results of my empirical research, which brings forth 4 quantitative variables – price index in exports (PL_X), average hours worked per person per year (AVH), the share of labour compensation in Gross National Income (LABSH), and the coefficient of human capital (HC – average years of schooling per person) – out of a total scope of 49 observables, as somehow privileged collective outcomes marked with precisely that recurrent, predictable pattern of learning.

The privileged position of those specific variables, against the others, manifests theoretically as their capacity to produce simulated social realities much more similar to the empirically observable state thereof than simulated realities based on other variables, whilst producing a strongly cyclical series of local residual errors in approximating said empirically observable state.

The method which allowed to produce those results generates simulated social realities with the use of artificial neural networks. Two types of networks are used to generate two types of simulation. One is a neural network which optimizes a specific empirical variable as its output, whilst using the remaining empirical variables as instrumental input. I call that network ‘procedure of learning by orientation’. The other type of network uses the same empirical variable as its optimizable output and replaces the vector of other empirical variables with a vector of hypothetical probabilities, corresponding to just as hypothetical social roles, in the presence of a random disturbance factor. I label this network as ‘learning procedure by pacing’.

The procedure of learning by orientation produces as many alternative sets of numerical values as there are variables in the original empirical dataset X used in research. In this case, it was a set made of n = 49 variables, and thus 49 alternative sets Si are created. Each alternative set Si consists of values transformed by the corresponding neural network from the original empirical ones. Both the original dataset X and the n = 49 transformations Si thereof can be characterized, mathematically, with their respective vectors of mean expected values. Euclidean distances between those vectors are informative about the mathematical similarity between the corresponding sets.

Therefore, learning by orientation produces n = 49 simulations Si of the actual social reality represented in the set X, when each such simulation is biased towards optimizing one particular variable ‘i’ from among the n = 49 variables studied, and each such simulation displays a measurable Euclidean similarity to the actual social reality studied. My own experience in applying this specific procedure is that a few simulations Si, namely those pegged on optimizing four variables – price index in exports [Si(PL_X)], average hours worked per person per year [Si[AVH)], the share of labour compensation in Gross National Income [Si(LABSH)], and the coefficient of human capital [Si(HC) – average years of schooling per person] – display much closer Euclidean a distance to the actual reality X than any other simulation. Much closer means closer by orders of magnitude, by the way. The difference is visible.

The procedure of learning by pacing produces n = 49 simulations as well, yet these simulations are not exactly transformations of the original dataset X. In this case, simulated realities are strictly simulated, i.e. they are hypothetical states from the very beginning, and individual variables from the set X serve as the basis for setting a trajectory of transformation for those hypothetical states. Each such hypothetical state is a matrix of probabilities, associated with two sets of social roles: active and dormant. Active social roles are being endorsed by individuals in that hypothetical society and their baseline, initial probabilities are random, non-null values. Dormant social roles are something like a formalized prospect for immediate social change, and their initial probabilities are null.

This specific neural network produces new hypothetical states in two concurrent ways: typical neural activation, and random disturbance. In the logical structure of the network, random disturbance occurs before neural activation, and thus I am describing details of the former in the first place. Random disturbance is a hypothetical variable, separate from probabilities associated with social roles. It is a random value 0 < d < 1, associated with a threshold of significance d*. When d > d*, d becomes something like an additional error, fed forward into the network, i.e. impacting the next experimental round performed in the process of learning.

In the procedure of learning by pacing, neural activation is triggered by aggregating partial probabilities, associated with social roles, and possibly pre-modified by the random disturbance, through the operation of weighed average of the type ∑ fj(pi, X(i,j), dj, ej-1,), where fj is the function of neural activation in the j-th experimental round of learning, pi is the probability associated with the i-th social role, X(i,j) is the random weight of pi in the j-th experimental round, dj stands for random disturbance specific to that experimental round, and ej-1 is residual error fed forward from the previous experimental round j-1.

Now, just to be clear: there is a mathematical difference, in that logical structure, between random disturbance dj, and the random weight X(i,j). The former is specific to a given experimental round, but general across all the component probabilities in that round. If you want, di is like an earthquake, momentarily shaking the entire network, and is supposed to represent the fact that social reality just never behaves as planned. This is the grain of chaos in that mathematical order. On the other hand, X(i,j) is a strictly formal factor in the neural activation function, and its only job is to allow experimenting with data.

Wrapping it partially up, the whole method I use in this article revolves around the working hypothesis that a given set of empirical data, which I am working with, represents collectively intelligent learning, where human social structures collectively experiment with many alternative versions of themselves and select those versions which offer the most desirable states in a few specific variables. I call these variables ‘collective orientations’ and I further develop that hypothesis by claiming that collective orientations have that privileged position because they allow a specific type of collective learning, strongly cyclical, with large amplitude of residual error.

In both procedures of learning, i.e. in orientation, and in pacing, I introduce an additional component, namely that of self-observed internal coherence. The basic idea is that a social structure is a structure because the functional connections between categories of phenomena are partly independent from the exact local content of those categories. People remain in predictable functional connections to their Tesla cars, whatever exact person and exact car we are talking about. In my method, and, as a matter of fact, in any quantitative method, variables are phenomenological categories, whilst the local values of those variables inform about the local content to find in respective categories. My idea is that mathematical distance between values represents temporary coherence between the phenomenological categories behind the corresponding variables. I use the Euclidean distance of the type E = [(a – b)2]0,5 as the most elementary measure of mathematical distance. The exact calculation I do is the average Euclidean distance that each i-th variable in the set of n variables keeps from each l-th variable among the remaining k = n – 1 variables, in the same experimental round j. Mathematically, it goes like: avgE = { ∑[(xi – xl)2]0,5 }/k. When I use avgE as internally generated input in a neural network, I use the information about internal coherence as meta-data in the process of learning.

Of course, someone could ask what the point is of measuring local Euclidean distance between, for example, annual consumption of energy per capita and the average number of hours worked annually per capita, thus between kilograms of oil equivalent and hours. Isn’t it measuring the distance between apples and oranges? Well, yes, it is, and when you run a grocery store, knowing the coherence between your apples and your oranges can come handy, for one. In a neural network, variables are standardized, usually over their respective maximums, and therefore both apples and oranges are measured on the same scale, for two.       

The method needs to be rooted in theory, which has two levels: general and subject-specific. At the general level, I need acceptably solid theoretical basis for positing the working hypothesis, as phrased out in the preceding paragraph, to any given set of empirical, socio-economic data. Subject-specific theory is supposed to allow interpreting the results of empirical research as conducted according to the above-discussed method.

General theory revolves around four core concepts, namely those of: intelligent structure, chain of states, collective orientation, and social roles as mirroring phenomena for quantitative socio-economic variables. Subject-specific theory, on the other hand, is pertinent to the general issue of energy-related policies, and to their currently most tangible manifestation, i.e., to environmentally friendly sources of energy.

The theoretical concept of intelligent structure, such as I use it in my research, is mostly based on another concept, known from evolutionary biology, namely that of adaptive walk in rugged landscape, combined with the phenomenon of tacit coordination. We, humans, do things together without being fully aware we are doing them together or even whilst thinking we oppose each other (e.g. Kuroda & Kameda 2019[1]). capacity for social evolutionary tinkering (Jacob 1977[2]) through tacit coordination, such that the given society displays social change akin to an adaptive walk in rugged landscape (Kauffman & Levin 1987[3]; Kauffman 1993[4]; Nahum et al. 2015[5]).

Each distinct state of the given society (e.g. different countries in the same time or different moments in time as regards the same country) is interpreted as a vector of observable properties, and each empirical instance of that vector is a 1-mutation-neighbour to at least one other instance. All the instances form a space of social entities. In the presence of external stressor, each such mutation (each entity) displays a given fitness to achieve the optimal state, regarding the stressor in question, and therefore the whole set of social entities yields a complex vector of fitness to cope with the stressor.

The assumption of collective intelligence means that each social entity is able to observe itself as well as other entities, so as to produce social adaptation for achieving optimal fitness. Social change is an adaptive walk, i.e. a set of local experiments, observable to each other and able to learn from each other’s observed fitness. The resulting path of social change is by definition uneven, whence the expression ‘adaptive walk in rugged landscape’. There is a strong argument that such adaptive walks occur at a pace proportional to the complexity of social entities involved. The greater the number of characteristics involved, the greater the number of epistatic interactions between them, and the more experiments it takes to have everything more or less aligned for coping with a stressor.

Somehow concurrently to the evolutionary theory, another angle of approach seems interesting, for solidifying theoretical grounds to my method: the swarm theory (e.g. Wood & Thompson 2021[6]; Li et al. 2021[7]). Swarm learning consists in shifting between different levels of behavioural coupling between individuals. When we know for sure we have everything nicely figured out, we coordinate, between individuals, by fixed rituals or by strongly correlated mutual reaction. As we have more and more doubts whether the reality which we think we are so well adapted to is the reality actually out there, we start loosening the bonds of behavioural coupling, passing through weakening correlation, and all the way up to random concurrence. That unbundling of social coordination allows incorporating new behavioural patterns into individual social roles, and then learning how to coordinate as regards that new stuff.   

As the concept of intelligent structure seems to have a decent theoretical base, the next question is: how the hell can I represent it mathematically? I guess that a structure is a set of connections inside a complex state, where complexity is as a collection of different variables. I think that the best mathematical construct which fits that bill is that of imperfect Markov chains (e.g. Berghout & Verbitskiy 2021[8]): there is a state of reality Xn = {x1, x2, …, xn}, which we cannot observe directly, whilst there is a set of observables {Yn} such that Yn = π (Xn), the π being a coding map of Xn. We can observe through the lens of Yn. That quite contemporary theory by Berghout and Verbitskyi sends to an older one, namely to the theory of g-measures (e.g. Keane 1972[9]), and all that falls into an even broader category of ergodic theory, which is the theory of what happens to complex systems when they are allowed to run for a long time. Yes, when we wonder what kind of adult our kids will grow up into, this is ergodic theory.

The adaptive walk of a human society in the rugged landscape of whatever challenges they face can be represented as a mathematical chain of complex states, and each such state is essentially a matrix: numbers in a structure. In the context of intelligent structures and their adaptive walks, it can be hypothesized that ergodic changes in the long-going, complex stuff about what humans do together happen with a pattern and are far from being random. There is a currently ongoing, conceptual carryover from biology to social sciences, under the general concept of evolutionary trajectory (Turchin et al. 2018[10]; Shafique et al. 2020[11]). That concept of evolutionary trajectory can be combined with the idea that our human culture pays particular attention to phenomena which make valuable outcomes, such as presented, for example, in the Interface Theory of Perception (Hoffman et al. 2015[12], Fields et al. 2018[13]). Those two theories taken together allow hypothesising that, as we collectively learn by experimenting with many alternative versions of our societies, we systematically privilege those particular experiments where specific social outcomes are being optimized. In other words, we can have objectively existing, collective ethical values and collective praxeological goals, without even knowing we pursue them.

The last field of general theory I need to ground in literature is the idea of representing the state of a society as a vector of probabilities associated with social roles. This is probably the wobbliest theoretical boat among all those which I want to have some footing in. Yes, social sciences have developed that strong intuition that humans in society form and endorse social roles, which allows productive coordination. As Max Weber wrote in his book ‘Economy and Society’: “But for the subjective interpretation of action in sociological work these collectivities must be treated as solely the resultants and modes of organization of the particular acts of individual persons, since these alone can be treated as agents in a course of subjectively understandable action”. The same intuition is to find in Talcott Parsons’ ‘Social system’, e.g. in Chapter VI, titled ‘The Learning of Social Role-Expectations and the Mechanisms of 138 Socialization of Motivation’: “An established state of a social system is a process of complementary interaction of two or more individual actors in which each conforms with the expectations of the other(’s) in such a way that alter’s reactions to ego’s actions are positive sanctions which serve to reinforce his given need-dispositions and thus to fulfill his given expectations. This stabilized or equilibrated interaction process is the fundamental point of reference for all dynamic motivational analysis of social process. […] Every society then has the mechanisms which have been called situational specifications of role-orientations and which operate through secondary identifications and imitation. Through them are learned the specific role-values and symbol-systems of that particular society or sub-system of it, the level of expectations which are to be concretely implemented in action in the actual role”.

Those theoretical foundations laid, the further we go, the more emotions awaken as the concept of social role gets included in scientific research. I have encountered views, (e.g. Schneider & Bos 2019[14]) that social roles, whilst being real, are a mechanism of oppression rather than social development. On the other hand, it can be assumed that in the presence of demographic growth, when each consecutive generation brings greater a number of people than the previous one, we need new social roles. That, in turn, allows developing new technologies, instrumental to performing these roles (e.g. Gil-Hernández et al. 2017[15]).

Now, I pass to the subject-specific, theoretical background of my method. I think that the closest cousin to my method, which I can find in recently published literature, is the MuSIASEM framework, where the acronym, deliberately weird, I guess, stands for ‘Multi-scale Integrated Analysis of Societal and Ecosystem Metabolism’. This is a whole stream of research, where human societies are studied as giant organisms, and the ways we, humans, make and use energy, is studied as a metabolic function of those giant bodies. The central assumption of the MuSIASEM methodology is that metabolic systems survive and evolve by maxing out on energy efficiency. The best metabolism for an economic system is the most energy-efficient one, which means the greatest possible amount of real output per unit of energy consumption. In terms of practical metrics, we talk about GDP per kg of oil equivalent in energy, or, conversely, about the kilograms of oil equivalent needed to produce one unit (e.g. $1 bln) of GDP. You can consult Andreoni 2020[16], Al-Tamimi & Al-Ghamdi 2020[17] or Velasco-Fernández et al. 2020[18], as some of the most recent examples of MuSIASEM being applied in empirical research.

This approach is strongly evolutionary. It assumes that any given human society can be in many different, achievable states, each state displaying a different energy efficiency. The specific state which yields the most real output per unit of energy consumed is the most efficient metabolism available to that society at the moment, and, logically, should be the short-term evolutionary target. Here, I dare disagreeing fundamentally. In nature, there is no such thing as evolutionary targets. Evolution happens by successful replication. The catalogue of living organisms which we have around, today, are those which temporarily are the best at replicating themselves, and not necessarily those endowed with the greatest metabolic efficiency. There are many examples of species which, whilst being wonders of nature in terms of biologically termed efficiency, are either endemic or extinct. Feline predators, such as the jaguar or the mountain lion, are wonderfully efficient in biomechanical terms, which translates into their capacity to use energy efficiently. Yet, their capacity to take over available habitats is not really an evolutionary success.

In biological terms, metabolic processes are a balance of flows rather than intelligent strive for maximum efficiency. As Niebel et al. (2019[19]) explain it: ‘The principles governing cellular metabolic operation are poorly understood. Because diverse organisms show similar metabolic flux patterns, we hypothesized that a fundamental thermodynamic constraint might shape cellular metabolism. Here, we develop a constraint-based model for Saccharomyces cerevisiae with a comprehensive description of biochemical thermodynamics including a Gibbs energy balance. Non-linear regression analyses of quantitative metabolome and physiology data reveal the existence of an upper rate limit for cellular Gibbs energy dissipation. By applying this limit in flux balance analyses with growth maximization as the objective function, our model correctly predicts the physiology and intracellular metabolic fluxes for different glucose uptake rates as well as the maximal growth rate. We find that cells arrange their intracellular metabolic fluxes in such a way that, with increasing glucose uptake rates, they can accomplish optimal growth rates but stay below the critical rate limit on Gibbs energy dissipation. Once all possibilities for intracellular flux redistribution are exhausted, cells reach their maximal growth rate. This principle also holds for Escherichia coli and different carbon sources. Our work proposes that metabolic reaction stoichiometry, a limit on the cellular Gibbs energy dissipation rate, and the objective of growth maximization shape metabolism across organisms and conditions’.  

Therefore, if we translate the principles of biological metabolism into those of economics and energy management, the energy-efficiency of any given society is a temporary balance achieved under constraint. Whilst those states of society which clearly favour excessive dissipation of energy are not tolerable on the long run, energy efficiency is a by-product of the strive to survive and replicate, rather than an optimizable target state. Human societies are far from being optimally energy efficient for the simple reason that we have plenty of energy around, and, with the advent of renewable sources, we have even less constraint to optimize energy-efficiency.

We, humans, survive and thrive by doing things together. The kind of efficiency that allows maxing out on our own replication is efficiency in coordination. This is why we have all that stuff of social roles, markets, institutions, laws and whatnot. These are our evolutionary orientations, because we can see immediate results thereof in terms of new humans being around. A stable legal system, with a solid centre of political power in the middle of it, is a well-tested way of minimizing human losses due to haphazard violence. Once a society achieves that state, it can even move from place to place, as local resources get depleted.

I think I have just nailed down one of my core theoretical contentions. The originality of my method is that it allows studying social change as collectively intelligent learning, whilst remaining very open as for what this learning is exactly about. My method is essentially evolutionary, whilst avoiding the traps of evolutionary metaphysics, such as hypothetical evolutionary targets. I can present my method and my findings as a constructive theoretical polemic with the MuSIASEM framework.


[1] Kuroda, K., & Kameda, T. (2019). You watch my back, I’ll watch yours: Emergence of collective risk monitoring through tacit coordination in human social foraging. Evolution and Human Behavior, 40(5), 427-435. https://doi.org/10.1016/j.evolhumbehav.2019.05.004

[2] Jacob, F. (1977). Evolution and tinkering. Science, 196(4295), 1161-1166

[3] Kauffman, S., & Levin, S. (1987). Towards a general theory of adaptive walks on rugged landscapes. Journal of theoretical Biology, 128(1), 11-45

[4] Kauffman, S. A. (1993). The origins of order: Self-organization and selection in evolution. Oxford University Press, USA

[5] Nahum, J. R., Godfrey-Smith, P., Harding, B. N., Marcus, J. H., Carlson-Stevermer, J., & Kerr, B. (2015). A tortoise–hare pattern seen in adapting structured and unstructured populations suggests a rugged fitness landscape in bacteria. Proceedings of the National Academy of Sciences, 112(24), 7530-7535, www.pnas.org/cgi/doi/10.1073/pnas.1410631112    

[6] Wood, M. A., & Thompson, C. (2021). Crime prevention, swarm intelligence and stigmergy: Understanding the mechanisms of social media-facilitated community crime prevention. The British Journal of Criminology, 61(2), 414-433.  https://doi.org/10.1093/bjc/azaa065

[7] Li, M., Porter, A. L., Suominen, A., Burmaoglu, S., & Carley, S. (2021). An exploratory perspective to measure the emergence degree for a specific technology based on the philosophy of swarm intelligence. Technological Forecasting and Social Change, 166, 120621. https://doi.org/10.1016/j.techfore.2021.120621

[8] Berghout, S., & Verbitskiy, E. (2021). On regularity of functions of Markov chains. Stochastic Processes and their Applications, Volume 134, April 2021, Pages 29-54, https://doi.org/10.1016/j.spa.2020.12.006

[9] Keane, M. (1972). Strongly mixingg-measures. Inventiones mathematicae, 16(4), 309-324. DOI

[10] Turchin, P., Currie, T. E., Whitehouse, H., François, P., Feeney, K., Mullins, D., … & Spencer, C. (2018). Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization. Proceedings of the National Academy of Sciences, 115(2), E144-E151. https://doi.org/10.1073/pnas.1708800115

[11] Shafique, L., Ihsan, A., & Liu, Q. (2020). Evolutionary trajectory for the emergence of novel coronavirus SARS-CoV-2. Pathogens, 9(3), 240. https://doi.org/10.3390/pathogens9030240

[12] Hoffman, D. D., Singh, M., & Prakash, C. (2015). The interface theory of perception. Psychonomic bulletin & review, 22(6), 1480-1506.

[13] Fields, C., Hoffman, D. D., Prakash, C., & Singh, M. (2018). Conscious agent networks: Formal analysis and application to cognition. Cognitive Systems Research, 47, 186-213. https://doi.org/10.1016/j.cogsys.2017.10.003

[14] Schneider, M. C., & Bos, A. L. (2019). The application of social role theory to the study of gender in politics. Political Psychology, 40, 173-213. https://doi.org/10.1111/pops.12573

[15] Gil-Hernández, C. J., Marqués-Perales, I., & Fachelli, S. (2017). Intergenerational social mobility in Spain between 1956 and 2011: The role of educational expansion and economic modernisation in a late industrialised country. Research in social stratification and mobility, 51, 14-27. http://dx.doi.org/10.1016/j.rssm.2017.06.002

[16] Andreoni, V. (2020). The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis. Energy Policy, 139, 111304. https://doi.org/10.1016/j.enpol.2020.111304

[17] Al-Tamimi and Al-Ghamdi (2020), ‘Multiscale integrated analysis of societal and ecosystem metabolism of Qatar’ Energy Reports, 6, 521-527, https://doi.org/10.1016/j.egyr.2019.09.019

[18] Velasco-Fernández, R., Pérez-Sánchez, L., Chen, L., & Giampietro, M. (2020), A becoming China and the assisted maturity of the EU: Assessing the factors determining their energy metabolic patterns. Energy Strategy Reviews, 32, 100562.  https://doi.org/10.1016/j.esr.2020.100562

[19] Niebel, B., Leupold, S. & Heinemann, M. An upper limit on Gibbs energy dissipation governs cellular metabolism. Nat Metab 1, 125–132 (2019). https://doi.org/10.1038/s42255-018-0006-7

The art of pulling the right lever

I dig into the idea of revising my manuscript ‘Climbing the right hill – an evolutionary approach to the European market of electricity’, in order to resubmit it to the journal Applied Energy , by somehow fusing it with two other, unpublished pieces of my writing, namely: ‘Behavioural absorption of Black Swans: simulation with an artificial neural network’, and ‘The labour-oriented, collective intelligence of ours: Penn Tables 9.1 seen through the eyes of a neural network’.

I am focusing on one particular aspect of that revision by recombination, namely on comparing the empirical datasets which I used for each research in question. This is an empiricist approach to scientific writing: I assume that points of overlapping, as well as possible synergies, are based, at the end of the day, on overlapping and synergies between the respective empirical bases of my different papers.

 In ‘Climbing the right hill […]’, my basic dataset consisted in m = 300 ‘country-year’ observations, in the timeframe from 2008 through 2017, and covering the following countries: Belgium, Bulgaria, Czechia, Denmark, Germany, Estonia, Ireland, Greece, Spain, France, Croatia, Italy, Cyprus, Latvia, Lithuania, Luxembourg, Hungary, Malta, Netherlands, Austria, Poland, Portugal, Romania, Slovenia, Slovakia, Finland, Sweden, United Kingdom, Norway, and Turkey. The scope of variables covered is essentially that of Penn Tables 9.1, plus some variables from other sources, pertinent to the market of electricity, to the energy sector in general, and to technological change, namely:

>> The price fork, in € between the retail price of electricity, paid by households and really small institutional entities, on the one hand, and the prices paid by big institutional consumers

>> The capital value of that price fork, in € mln, thus the difference in prices multiplied by the quantity of electricity consumed

>> Total consumption of energy in the country (thousands of tonnes of oil equivalent)

>> The percentage share of electricity in the total consumption of energy

>> The percentage share of renewable sources in the total output of electricity

>> The number of resident patent applications per country per year

>> The coefficient of fixed assets per 1 resident patent application

>> The coefficient of resident patent applications per 1 million people

The full set, in Excel format, is accessible via the following link: https://discoversocialsciences.com/wp-content/uploads/2019/11/Database-300-prices-of-electricity-in-context.xlsx . I also used a recombination of that database, made of m = 3000 randomly stacked records from the m = 300 set, just in order to check the influence of order in ‘country-year’ observations upon the results I obtained

In the two other manuscripts, namely in ‘The behavioural absorption of Black Swans […]’ and in ‘The labour-oriented, collective intelligence of ours […]’, I used one and the same empirical database, made of m = 3006 ‘country-year’ records, all selected from Penn Tables 9.1 , with the criteria of selection being the fullness of information. In other words, I kicked out of Penn Tables 9.1. all the rows with empty cells, and what remains is the m = 3006 set.

As I attempt to make some sort of cross analysis between my results from those three papers, one crossing is obvious. Variables pertinent to the market of labour, i.e. the average number of hours worked per person per year (AVH), the percentage of labour compensation in the gross national income (LABSH), and the indicator of human capital (HC), informative about the average length of educational path in the professionally active people, seem to play a special role as collectively pursued outcomes. The special role of those three – AVH, LABSH, and HC – seems to be impervious to, respectively, the presence or the absence of the variables I added from other sources in ‘Climbing the right hill […]’. It also seems impervious to the geographical scope and the temporal window of observation.

The most interesting direction for a further exploration seems to be in the crossing of ‘Black Swans […]’ with ‘Climbing the right hill […]. I take the structure from ‘Black Swans […]’ – namely the model where the optimization of an empirical variable impacts a range of social roles – and I put in that model the dataset from  ‘Climbing the right hill […]’. I observe the patterns of learning occurring in the perceptron, as I take different empirical variables.

Variables which are strong collective orientations – AVH, LABSH, and HC – display a special pattern of learning, different from other variables. Their local residual error (i.e. the arithmetical difference between the value of neural activation function and the local empirical value at hand), swings in a wide amplitude, yet in a predictable cycle. It is a pattern of learning in the lines of ‘we make a lot of mistakes, then we minimize them, and then we repeat: a lot of mistakes followed by a period of accuracy’. Other variables, run through the same model, display something different: a general tendency to minimal error, with occasional, pretty random bumps. Not much error, and not much of a visible cycle in learning.

The national societies which I study, seem to orient themselves on outcomes which associate with strong and predictably cyclical amplitude of error, this with abundant learning in a predictable cycle. There is one more thing. When optimizing variables relative to the market of labour – AVH, LABSH, and HC – the model from ‘Black Swans […]’ shows relatively the highest resilience in the incumbent social roles, i.e. those in place before social disruption starts.

Good. Something takes shape. I am reframing the method and the material I want to introduce in the revised version of ‘Climbing the right hill […]’, for the journal Applied Energy, and I add some results and provisional conclusions.

When I take the empirical material from Penn Tables 9.1, thus when I observe the otherwise bloody chaotic thing called ‘society’ through the lens of quantitative variables pertinent to the broadly spoken real of macroeconomics, that material shows some repetitive, robust properties. When I run in through a learning procedure, expressed in the form of a simple neural network, the learning centred on optimizing variables pertinent to the labour market (AVH, LABSH, HC), as well as on the index of prices in export (PL_X), – yields artificial datasets more similar to the original one, in terms of Euclidean similarity, than any other such artificial dataset, optimizing other variables. That phenomenological hierarchy seems to be robust both to the modifications of scope, and those of spatial-temporal range. When I add variables pertinent to technological change and to the market of electricity, they obediently take their place in the rank, and don’t step forward. When I extend the geographical scope of observation from Europe to the whole world, and when I extend the window of observation from the initial {2008 ÷ 2017} to the longer {1954 ÷ 2017}, the same still holds.

As I try to explain why is it so, and I try to find an empirical explanation, I make another neural network, where each empirical variable from the original dataset is the optimized output, and optimization takes place by experimenting with a vector of probabilities assigned to a set of social roles, and a random factor of disturbance. The pattern of learning is observed as the distribution of residual errors over the entire experimental sequence of phenomenal instances. In that different perspective, the same variables which seem to be privileged collective outcomes – PL_X, AVH, LABSH, and HC – display a specific pattern of learning: they swing broadly in their error, and yet they swing in a predictable cycle. When my experimental neural network learns on other variables, the pattern is different, with the curve of error being much calmer, less bumpy, and yet much less cyclical.

I return to my method and to my theoretical assumptions. I recapitulate. I start by assuming that social reality is essentially chaotic and unobservable directly, yet I can make epistemological approximations of that thing and see how they work. In this specific piece of research, I make two such types of approximation, based on different assumptions. On the one hand, I assume that quantitative, commonly measured, socio-economic variables, such as those in Penn Tables 9.1 are partial expressions of change in that otherwise chaotic social reality, and we collect those values because they represent change in the collective outcomes which we value. On the other hand, I assume that social reality can be represented as a collection of social roles, in two distinct categories: the already existing, active social roles, accompanied by temporarily dormant, ready-to-be triggered roles. Those social roles are observable as the relative frequency of occurrence, thus as the probability that any given individual endorses them.

I further assume that human societies are collectively intelligent structures, which, in turn, means that we collectively learn by experimenting with many alternative versions of ourselves. By the way, I have been wondering whether this is a hypothesis or an assumption, and I settled for assumption, because I do not really bring any direct proof thereof, and yet I make the claim. Anyway, with the assumption of collective intelligence, I can simulate two mutually correlated processes of learning through experimentation. On the one hand, among all the collective outcomes represented with quantitative socio-economic variables, we learn hierarchically, i.e. we optimize some of those outcomes in the first place, whilst treating the other ones as instrumental to that chief goal. On the other hand, we optimize each of those outcomes, represented with quantitative variables, by experimenting with the relative prevalence (i.e. probability of endorsement) in distinct social roles.

That general theoretical perspective is the foundation which I use to both make an empirical method of research, and to substantiate the claim that public policies and business strategies which stimulate technological race with clear prime for winners and clear penalty for losers are likely to bring better results, especially on the long run, than policies and strategies aiming at erasing local idiosyncrasies and at creating uniformly distributed outcomes. My point is that the latter, i.e. policies oriented on nullifying local idiosyncrasies, lead either to the absence of idiosyncrasies, and, consequently, to the absence of different versions in ourselves to experiment with and learn, or they simply prove inefficient, as they try to move the wrong lever in the machine.

Now, looking through another door inside my head, I am presenting below the structure of semestral projects I assign to my students, in the Summer semester 2021, in two different, and yet somehow concurrent courses: International Trade Policy in the major International Relations, and International Management in the major Management. You will see how I teach, and how I get a bit obsessive about digging into the same ideas, over and over again.

The complex project to graduate the International Management course, Summer semester 2021

Our common goal: develop your understanding of the transition from the domestically based business structure to an international one.

Your goal: prepare a developed, well-informed business plan, for the development of a business, from the level of one national market, to the international level. That business plan is your semestral project, which you graduate the course of International Management with.

You can see this course as an opportunity to put together and utilize the partial learning you have from all the individual subject courses you have had so far.

Your deadline is June 25th, 2021. 

Definition – international scale of a business means that it becomes an economically significant choice to branch the operations into or move them completely to foreign markets. In other words, the essential difference between domestic management and international management – at least the difference we will focus on in this course – is that in domestic management the initial place of incorporation determines the strategy, whilst in international management the geographical location of operations and incorporation(s) is determined by strategic choices. 

You work with a business concept of your own, or you take one of the pre-prepared business plans available at the digital platform. These are graduation business plans prepared by students from other groups, in the Winter semester 2020/2021. In other words, you develop either on your own idea, or on someone else’s idea. One of the things you will find out is that different business concepts have different potential, and follow very different paths for going to the international level.

Below, you will find the list of those pre-prepared business plans. They are coupled with links to the archives of my blog, where you can download them from. Still, you can find them as well in the ‘Files’ section of the group ‘International Management’, folder ‘Class materials’.

>> Pizzeria >> https://discoversocialsciences.com/wp-content/uploads/2021/03/Pizzeria-Business-plan.docx

>> Pancake Café >> https://discoversocialsciences.com/wp-content/uploads/2021/03/Pancake-Cafe-Business-Plan.pptx

>> Never Alone >> https://discoversocialsciences.com/wp-content/uploads/2021/03/Never-Alone-business-plan.pdf

>> 3D Virtual Fitting Room >> https://discoversocialsciences.com/wp-content/uploads/2021/03/3D-Virtual-Fitting-Room-Business-Plan.docx

>> ToyBox >> https://discoversocialsciences.com/wp-content/uploads/2021/03/ToyBox-Business-Plan.pdf

>> Chess Manufacturing (semi-finished, interesting to develop from that form) >> https://discoversocialsciences.com/wp-content/uploads/2021/03/Chess-Business-Plan-Semi-Done.docx

>> Second-hand market for luxury goods >> https://discoversocialsciences.com/wp-content/uploads/2021/03/Business-Plan-second-hand-market-for-luxury-fashion.docx

We will abundantly use real-life cases of big, internationally branched businesses as our business models. Some of them are those which you already know from past semesters, whilst other might be new to you:

>> Netflix >> https://ir.netflix.net/ir-overview/profile/default.aspx

>> Tesla >> https://ir.tesla.com/

>> PayPal >> https://investor.pypl.com/home/default.aspx

>> Solar Edge >> https://investors.solaredge.com/investor-overview

>> Novavax >> https://ir.novavax.com/investor-relations

>> Pfizer >> https://investors.pfizer.com/investors-overview/default.aspx

>> Starbucks >> https://investor.starbucks.com/ir-home/default.aspx

>> Amazon >> https://ir.aboutamazon.com/overview/default.aspx

That orientation on real business cases means that the course of International Management is, from your point of view, a course of market research, business planning, and basic empirical science, more than a theoretical course. This is precisely what we are going to be doing in our classes: market research, business planning, and basic empirical science. 

You can benefit from running yourself through my online course of business planning, to be found at https://discoversocialsciences.com/the-course-of-business-planning/ .

The basic structure of the business plan which you will prepare is the following:

  • Section 1: Executive summary. This is a summary of the essentials, developed in further sections of the business plan. Particular focus on why and how going international with that business concept.
  • Section 2: Description of the business concept. How do we create, and capture value added in that thing? What kind of value added is that? What are the goods we market? Who are our target customers? What kind of really existing, operational business models, observable in actually operational companies, do we emulate in that business?
  • Section 3: Market research. We focus on collecting and presenting information on our customers, and our competitors.
  • Section 4: Organization. How are we going to structure human work in that business? How many people do we need, and what kind of organizational structure should we make them work in? What is the estimate, total payroll per month and per year, in that organization?
  • Section 5: The strategy for going international. Can we develop an original, proprietary technology, and apply it in different national markets? Can we benefit from the economies of scale, or those of scope, as we go international? Can we optimize and standardize our business concept into a franchise, attractive for smaller partners in foreign markets? << this is the ‘INTERNATIONAL MANAGEMENT’ part of that business plan. Now, you demonstrate your understanding of what international management is.
  • Section 6: The corporate business structure. Do you see that business as one compact business entity, which operates internationally via digital platforms and contracts with external partners, or, conversely, would you rather create a network of affiliated companies in separate national (regional?) markets, all tied to and controlled by one mother company? Develop on those options and justify your choice. 
  • Section 7: The financial plan. Plan of revenues, costs, and of the resulting profit/loss for 3 years ahead. The balance sheet we need to start with, and its prospective changes over the next 3 years. The prospective cash-flow.

Guidelines for the graduation project in International Trade Policy Summer semester 2021

You graduate the course of ‘International Trade Policy’ by preparing a project. Your project will be a business report, the kind you could have to prepare if you are assistant to the CEO of a big firm, or to a prime minister. You are supposed to prepare a report on the impact of trade on individual businesses and national economies, in a sort of controlled economic experiment, limited in scope and in space. Your goal in the preparation of that project is to develop active understanding of international trade.

You can access the files provided as additional materials for this assignment in two ways. Below in this document, I provide links to the archives of my blog, ‘Discover social sciences’. On the other hand, all those files are to find in the ‘Files’ section of the ‘International Trade Policy’ group, in the folder ‘Class Materials’.

Your report will have two sections. In Section A, you study the impact of international trade on a set of businesses. Your business cases encompass real companies, some of which you already know from the course of microeconomics – Tesla, Netflix, Amazon, H&M – as well as new business entities which can emerge as per the business plans introduced below (these are real business plans made by students in other groups in the Winter semester 2020/2021).  

In the Section B of your report, imagine that you are the government of, respectively, Poland, Ukraine, and France. Imagine that businesses from Part A grow in your country. Given the macroeconomic characteristics of your national economy, which types of those businesses are likely to grow the most, and which are not really fit? As a country, as those businesses grow, would you see your exports grow, or would it be rather an increase in your imports? How would it affect your overall balance on trade? What would you do as a government and why?

Additional guidelines and materials for the Section A of your report:

You can make a simplifying assumption that businesses can develop with and through trade along two different, although not exactly exclusive paths:

  • Case A: there is a technology with potential for growth, which can be developed through expanding its target market, with exports or with franchise
  • Case B: the gives business can develop significant economies of scale and scope, and trade, i.e. exports or/and imports, are a way to achieve that

You can benefit from studying the model contract of sales in international trade: https://discoversocialsciences.com/wp-content/uploads/2020/02/sale_of_perishables_model_contract.pdf

… as well as studying the so-called Incoterms >> https://discoversocialsciences.com/wp-content/uploads/2020/03/Incoterms.pdf , which are standard conditions of delivery in international trade.

The early business concepts developed by students from other groups, which you are supposed to assess as for their capacity to grow through trade, are:

The investor relations sites of the real, big companies, whose development with trade you are supposed to study as well:

Additional guidelines and materials for the Section B of your report:

The so-called trade profiles of countries, accessible with the World Trade Organization: https://www.wto.org/english/res_e/publications_e/trade_profiles20_e.htm

Example of an international trade agreement, namely than between South Korea and Australia: https://discoversocialsciences.com/wp-content/uploads/2021/03/korea-australia-free-trade-agreement.pdf

Macroeconomic profiles of Poland, Ukraine, and France >> https://discoversocialsciences.com/wp-content/uploads/2021/03/Macroeconomic-Profiles.xlsx

Phases of abundant experimentation

I am working, in parallel, on revising my manuscript, titled ‘Climbing the right hill – an evolutionary approach to the European market of electricity’, on the one hand, and on preparing catchy, interesting paths of teaching for the summer semester, at the university, on the other hand. As for the former, you can read more in my last two updates, namely in ‘Still some juice in facts’, and in ‘As it is ripe, I can harvest’. In this update, I will develop on that path of work, but first, I am sharing a piece of educational structure I came up with for my workshops in Macroeconomics, with the students of 1st year, Bachelor, major International Relations, at my home university, namely the Andrzej Frycz-Modrzewski Krakow University, Krakow, Poland. Below, I am copying the description of training assignment such as it is being presented to my students. 

For graduating workshops in Macroeconomics, Summer semester 2021, you will prepare just one, structured assignment. You can consider it as a follow up on the business plan you prepared in the course of Microeconomics.

You can take your business plan from the course of Microeconomics, or you can choose one of the business plans specifically provided as case studies for this assignment, namely:

>> https://discoversocialsciences.com/wp-content/uploads/2021/03/Switch-Park-Business-Plan.docx

>> https://discoversocialsciences.com/wp-content/uploads/2021/03/Peerket-Business-Plan.docx

>> https://discoversocialsciences.com/wp-content/uploads/2021/03/Foodies-Business-Plan.docx

Pick ONE business plan, once again: your own or one of the three provided as library. Review the customers’ profile in that particular business concept. Who are the customers? Are they individuals (households) or are they institutional (firms, public institutions etc.)?

Now, imagine the whole market of businesses such as the one described.

Those customers have a budget to finance the purchase of goods named in that business plan.

What other goods do they finance with the same budget?

What stream of cash does that budget come from?  Do they pay for those goods with their current income, or do they pay out of their capital base (i.e. from their assets)?

Now, take the entire population of those customers. Their AGGREGATE budgets represent aggregate demand, and that demand is derived from a stream of income, or from a capital base. In your analysis, at this point, phrase it out explicitly: ‘The market for this business concept is based on aggregate demand coming from the group of customers ABCD, and the value of that aggregate demand depends on the aggregate stream of income Y, or on the aggregate amount of assets X.’

Place that business plan in the context of the national economies whose macroeconomic profiles are provided in the file attached to this assignment (https://discoversocialsciences.com/wp-content/uploads/2021/03/Data-for-work-with-business-plans.xlsx). Those national economies are: Bulgaria, Croatia, Poland, Russia, Turkey, Ukraine, France, Italy, Latvia.

Use exhaustively, in an informed, articulate manner, the data provided in the attached file, to develop an analysis and answer the following question: ‘Which of these countries makes the best macroeconomic environment for the implementation of this specific business plan? Which of the countries is the worst macroeconomic environment in that respect? Provide, using the data at hand, informed argumentation for your choice’.  

Provide your answer in the form of a business report, something like an extended, macroeconomic analysis for the business plan you took on studying the macroeconomic environment for. As you will be working with the data supplied to assists your answer, you will go through the following macroeconomic variables:

Subject DescriptorUnitsScale
Gross domestic product, constant pricesNational currencyBillions
Gross domestic product, constant pricesPercent change
Gross domestic product, current pricesNational currencyBillions
Gross domestic product, current pricesU.S. dollarsBillions
Gross domestic product, current pricesPurchasing power parity; international dollarsBillions
Gross domestic product, deflatorIndex
Gross domestic product per capita, constant pricesNational currencyUnits
Gross domestic product per capita, constant pricesPurchasing power parity; 2017 international dollarUnits
Gross domestic product per capita, current pricesNational currencyUnits
Gross domestic product per capita, current pricesU.S. dollarsUnits
Gross domestic product per capita, current pricesPurchasing power parity; international dollarsUnits
Gross domestic product based on purchasing-power-parity (PPP) share of world totalPercent
Implied PPP conversion rateNational currency per current international dollar
Total investmentPercent of GDP
Gross national savingsPercent of GDP
Inflation, average consumer pricesIndex
Inflation, average consumer pricesPercent change
Inflation, end of period consumer pricesIndex
Inflation, end of period consumer pricesPercent change
Volume of imports of goods and servicesPercent change
Volume of Imports of goodsPercent change
Volume of exports of goods and servicesPercent change
Volume of exports of goodsPercent change
Unemployment ratePercent of total labor force
PopulationPersonsMillions
Current account balanceU.S. dollarsBillions
Current account balancePercent of GDP

Workshops will largely consist in explaining those macroeconomic concepts, and I strongly encourage you to study their meaning in a textbook, and in online resources. The simplest way is to type each of these categories into a Google search and study the results of that search.

Your assignment largely consists in developing credible statements of the type: ‘Country A seems to make the best macroeconomic environment for this business, because its macroeconomic variables X, Y and Z take values x, y and z’.

Now, teaching content shared, I am returning to revising my manuscript. I think I pretty much nailed down, in  the last update (‘As it is ripe, I can harvest’), the core of the reproducible method of research which I want to present. As I am working on phrasing out the finer details of that reproducible method, and position it vis a vis the corresponding theory, whilst instrumenting it with a computational model, I feel like returning to questions, which the journal Applied Energy requires to address in my cover letter. I remind those questions below.

>> (1) what is the novelty of this work?

>> (2) is the paper appealing to a popular or scientific audience?

>> (3) why the author thinks the paper is important and why the journal should publish it?

I start with a tentative answer to the last one, about the importance of that research, as well as about the usefulness of publishing it. When my research gets published, two things happen. Firstly, it is being peer-reviewed, and is published only after a specific ritual is accomplished. The ritual starts with editor of the journal judging the paper ripe for asking other scientists to review it, usually 2 or 3 of them. That release from the editor to the reviewers results in the reviewers having a go at the paper, and assessing whether it is acceptable at all, and what kind of critical remarks they have. Generally, the reviewers are not expected to be indiscriminately enthusiastic about the paper. The type of answer to expect from them is the ‘yes, but…’ type. Once they provide their reviews of my manuscript in that form, I am expected to revise once again, whilst explicitly addressing the critical remarks from reviewers in a separate statement. At this stage, I revise in a ‘yes, but…’ style. I am like: ‘Yes, at this point, you are right, prof. YUTOONJJK, and thus I am changing my stance accordingly, but at this other point, with all the due respect, I am holding my ground and here is why I am doing so: …’. This phase of revision is tricky. Technically, I could change everything in response to critical remarks, but it wouldn’t be the same paper anymore. In order to remain in the same scientific territory, I need, first of all, to study the same facts. Thus, my empirical base remains the same. The essential points of my method should stay in place as well, I just might need to support it with more convincing an argumentation. What I can really change in response to reviewers’ criticism, are some details in my calculations, and the interpretation I give to the results of my empirical investigation.

The first aspect of having my paper published is precisely my readiness, and my ability, to go gracefully and convincingly through that ritual of peer-review, and my response thereto. If I think that my paper deserves publishing, I indirectly suggest that when it passes the ritualised dialogue of peer-review, everybody involved will be better off, i.e. the scientific community will benefit from other scientists criticising me, and me responding to their criticism through a polite, informed statement that I am holding my ground, with maybe some tiny concessions. Another aspect of publication is the capacity, for me, to cite that publication of mine in the future. Why would I do it? Mostly when I will be applying for funding, it is frequently welcome to prove that the research I will intend to conduct is relevant, important, and I am not (entirely) mad in my methods of running that research. In other words, when my paper gets published, it gives me scientific firepower to develop on the same stream of research. That, in turn, requires me to define an acceptably coherent stream of research, for one, and that stream should have potential for development.

All in all, when I claim that the journal which I am submitting to should publish my paper, I should convincingly prove that my research can enrich the scientific community, and it has strong potential for future development. Those general remarks phrased out, I can apply that line of thinking to my manuscript.

Policies pertinent to energy systems, especially in the environmental perspective, frequently assume that significant idiosyncrasies in individual agents or in political entities (countries, regions etc.) are bad for progress, and they should be equalized. In other words, public policies should be equalizers, or redistributors of gains from the technological race. I could notice that theoretical stance in one of the articles I have recently quoted, namely in ‘The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis’. Energy Policy, 139, 111304. https://doi.org/10.1016/j.enpol.2020.111304 (2020),  byprofessor Valeria Andreoni. Still, from the management point of view, or from the perspective of the new institutional school in economics, this is not necessarily true. If we want quick, deeply transformative technological change, we need a true technological race, with true winners and true losers. Equality does not really serve efficient adaptation.

I think that public policies supposed to drive rapid technological change should stimulate technological race, and stimulate inequality of outcomes in that race. In order to adapt to serious s**t, we need to experiment with many alternative ways of action. The question is: how exactly can we do it? How can governments experiment? In order to address that question, there is another one to answer: how exactly does that experimentation occur? What exactly is happening when we collectively experiment with ourselves, as a society? I think that the methodology I present in my paper creates a small opening up and into that realm of research: simulating social and technological change as a process of learning by trial and error.

Summing partly up that intellectual meandering of mine, I think that my paper deserves publishing because my method of studying social and technological change – as a manifestation of learning in collectively intelligent social structures, which adapt to stressors by creating many alternative versions of themselves and assessing their fitness to cope with said stressors – allows conceptualizing public policies and business strategies, in the sector of energy, as a process of heuristic, adaptive experimentation rather than as a linear path towards a determined end-state.

As I have spat this one out, I think that I need to combine that manuscript, namely ‘Climbing the right hill – an evolutionary approach to the European market of electricity’, such as it is now, with two others, unpublished as well: ‘Behavioural absorption of Black Swans: simulation with an artificial neural network’, for one, and ‘The labour-oriented, collective intelligence of ours: Penn Tables 9.1 seen through the eyes of a neural network’, for two. They all operate on overlapping datasets, and they show different aspects of the same essential method.

The next question to address in my cover letter is the target audience of my paper. Is my article made for the popular audience, or rather for the scientific one? I am tempted to say: ‘for both’. Yet, I know this is a tricky question. It really means asking ‘Is my article refined enough, in terms of scientific method, to impress and influence my fellow scientists, or is it rather an interesting piece, detached from the main body of science, and served to non-scientific people in a tasty sauce?’. At the end of the day, I want to write it both ways, but the latter one will go down better as a book, later on. The form it has now, i.e. that of an article, my idea is addressed to a scientific audience, as a slightly provocative opening on an interesting perspective. Precisely, the deep intuition that I am opening a path of research rather than closing one, makes me stay at the level of short scientific form.

As I have provisionally walked myself through the cover letter which I should address to the editor of the journal Applied Energy , I come back to the structure I should give to the revised paper: ‘Introduction’, ‘Material and Methods’, ‘Theory’, ‘Calculation’, ‘Results’, ‘Discussion’, ‘Conclusion’, ‘Data availability’, ‘Glossary’, ‘Appendices’, Highlights, and Graphical Abstract.

As I intend to combine three manuscripts into one, the combined highlights of those three would be:

>> Public policies and business strategies can be studied as adaptive change in a collectively intelligent structure.

>> Markov chains of states are the general mathematical foundation of such an approach.

>> A simple perceptron can be used as computational tool for simulating social and technological change in real world.

>> The method presented allows discovering distinct, collectively pursued orientations of whole societies, and distinct types of collective learning.

>> Empirical findings suggest collective orientation on optimizing the labour market, rather than direct orientation on transforming the energy base of societies.

>> That collective orientation seems being pursued through an almost perfectly cyclical process of learning, where phases of abundant experimentation are interspersed with periods of relative homeostasis.

As it is ripe, I can harvest

I keep revising my manuscript titled ‘Climbing the right hill – an evolutionary approach to the European market of electricity’, in order to resubmit it to the journal Applied Energy. In my last update, titled ‘Still some juice in facts’, I used the technique of reverted reading to break the manuscript down into a chain of ideas. Now, I start reviewing the most recent literature associated with those ideas. I start with Rosales-Asensio et al. (2020)[1], i.e. with ‘Decision-making tools for sustainable planning and conceptual framework for the energy–water–food nexus’. The paper comes within a broader stream of literature, which I already mentioned in the first version of my manuscript, namely within the so-called MUSIASEM framework, where energy management in national economies is viewed as metabolic function, and socio-economic systems in general are equated to metabolic structures. Energy, water, food, and land are considered in this paper as sectors in the economic system, i.e. as chains of markets with economic goods being exchanged. We know that energy, water and food are interconnected, and all the three are connected to the way that our human social structures work. Yet, in the study of those connections we have been going into growing complexity of theoretical models, hardly workable at all when applied to actual policies. Rosales-Asensio et al. propose a method to simplify theoretical models in order to make them functional in decision-making. Water, land, and food can be included into economic planning as soon as we explicitly treat them as valuable assets. Here, the approach by Rosales-Asensio et al. goes interestingly against the current of something that can be labelled as ‘popular environmentalism’. Whilst the latter treats those natural (or semi-natural, in the case of food base) resources as invaluable and therefore impossible to put a price tag on, Rosales-Asensio et al. argue that it is much more workable, policy-wise to do exactly the opposite, i.e. to give explicit prices and book values to those resources. The connection between energy, water, food, and the economy is being done as transformation of matrices, thus as something akin a Markov chain of states. 

The next article I pass in review is that by Al-Tamimi and Al-Ghamdi (2020), titled ‘Multiscale integrated analysis of societal and ecosystem metabolism of Qatar’ (Energy Reports, 6, 521-527, https://doi.org/10.1016/j.egyr.2019.09.019 ). This paper presents interesting findings, namely that energy consumption in Quatar, between 2006 and 2015, grew at a faster rate than GDP within the same period, and energy consumption per capita and energy intensity grew approximately at the same rate. That could suggest some kind of trade-off between productivity and energy intensity of an economy. Interestingly, the fall of productivity was accompanied by increased economic activity of the Quatar’s population, i.e. the growth of professionally active population, and thence of the labour market, was faster than the overall demographic growth.

In still another paper, titled ‘The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis’. Energy Policy, 139, 111304. https://doi.org/10.1016/j.enpol.2020.111304 (2020),  professor Valeria Andreoni develops a line of research, where rapid economic change, even when it is a crisis-like change, contributes to reducing energy intensity of national economies. Still, some kind of blueprint for energy-efficient technological change needs to be in place, at the level of national policies. Energy-efficient technological change might be easier than we think, and yet, apparently, it needs some sort of accompanying economic change as its trigger. Energy efficiency seems to be correlated with competitive technological development in national economies. Financial constraints can hamper those positive changes. Cross-sectional (i.e. inter-country) gaps in energy efficiency are essentially bad for sustainable development. Public policies should aim at equalizing those gaps, by integrating the market of energy within EU. 

Velasco-Fernández, R., Pérez-Sánchez, L., Chen, L., & Giampietro, M. (2020), in the article titled ‘A becoming China and the assisted maturity of the EU: Assessing the factors determining their energy metabolic patterns’. Energy Strategy Reviews, 32, 100562.  https://doi.org/10.1016/j.esr.2020.100562 , bring empirical results somehow similar to mine, although with a different method. The number of hours worked per person per year is mentioned in this paper as an important variable of the MuSIASEM framework for China. There is, for example, a comparison of energy metabolized in the sector of paid work, as compared to the household sector. It is found that the aggregate amount of human work used in a given sector of the economy is closely correlated with the aggregate energy metabolized by that sector. The economic development of China, and its pattern of societal metabolism in using energy, displays increase in the level of capitalization of all sectors, while reducing the human activity (paid work) in all of them except in the services. In the same time, the amount of human work per unit of real output seems to be negatively correlated with the capital-intensity (or capital-endowment) of particular sectors in the economy. Energy efficiency seems to be driven by decreasing work-intensity and increasing capital-intensity.

I found another similarity to my own research, although under a different angle, in the article by Koponen, K., & Le Net, E. (2021): Towards robust renewable energy investment decisions at the territorial level. Applied Energy, 287, 116552.  https://doi.org/10.1016/j.apenergy.2021.116552 . The authors build a simulative model in Excel, where they create m = 5000 alternative futures for a networked energy system aiming at optimizing 5 performance metrics, namely: the LCOE cost of electricity, the GHG metric (greenhouse gases emission) for the climate, the density of PM2.5 and PM10 particles in the ambient air as a metric of health, capacity of power generation as a technological benchmark, and the number of jobs as social outcome. That complex vector of outcomes has been simulated as dependent on a vector of uncertainty as regards costs, and more specifically: cost of CO2, cost of electricity, cost of natural gas, and the cost of biomass. The model was based on actual empirical data as for those variables, and the ‘alternative futures’ are, in other words, 5000 alternative states of the same system. Outcomes are gauged with the so-called regret analysis, where the relative performance in a specific outcome is measured as the residual difference between its local value, and, respectively, its general minimum or maximum, depending on whether the given metric is something we strive to maximize (e.g. capacity), or to minimize (e.g. GHG). The regret analysis is very similar to the estimation of residual local error.

That short review of literature has the merit of showing me that I am not completely off the picture with the method and he findings which I initially presented to the editor of Applied Energy in that manuscript: ‘Climbing the right hill – an evolutionary approach to the European market of electricity’. The idea of understanding the mechanism of change in social structures, including the market of energy, by studying many alternative versions of said structure, seems to be catching in literature. I am progressively wrapping my mind around the fact that in my manuscript, the method is more important than the findings. The real value for money of my article seems to reside in the extent to which I can demonstrate the reproducibility and robustness of that method.

Thus, probably for the umpteenth time, I am rephrasing the fundamentals of my approach, and I am trying to fit it into the structure which Applied Energy recommends for articles submitted to their attention. I should open up with an ‘Introduction’, where I sketch the purpose of the paper, as well as the main points of the theoretical background which my paper stems from, although without entering into detailed study thereof. Then, I should develop on ‘Material and Methods’, with the main focus on making my method as reproducible as possible, and now comes the time to develop on, respectively, ‘Theory’ and ‘Calculation’, thus elaborating on the theoretical foundations of my research as pitched against literature, and on the detailed computational procedures I used. I guess that I need to distinguish, at this specific point, between the literature pertinent to the substance of my research (Theory), and that oriented on the method of working with empirical data (Calculation).

Those four initial sections – Introduction, Material and Methods, Theory, Calculation – open the topic up and then comes the time to give it a closure, with, respectively: ‘Results’, ‘Discussion’, and, optionally, a separate ‘Conclusion’. Over the top of that logical flow, I need to decorate with sections pertinent to ‘Data availability’, ‘Glossary’, and ‘Appendices’. As I get further back from the core and substance of my manuscript, and deeper into peripheral information, I need to address three succinct ways of presenting my research: Highlights, Graphical Abstract, and a structured cover letter. Highlights are 5 – 6 bullet points, 1 – 2 lines each, sort of abstract translated into a corporate presentation on slides. The Graphical Abstract is a challenge – as I need to present complex ideas in a pictographic form – and it is an interesting challenge. The structured cover letter should address the following points:

>> what is the novelty of this work?

>> is the paper appealing to a popular or scientific audience?

>> why the author thinks the paper is important and why the journal should publish it?

>> has the article been checked by an expert native speaker?

>> is the author available as reviewer?

Now, I ask myself fundamental questions. Why should anyone bother about the substance and the method of the research I present in my article. I noticed, both in public policies and in business strategies, a tendency to formulate completely unrealistic plans, and then to complain about other people not being smart enough to carry those plans out and up to happy ending. It is very visible in everything related to environmental policies and environmentally friendly strategies in business. Environmental activism consumes itself, very largely, in bashing everyone around for not being diligent enough in saving the planet.

To me, it looks very similarly to what I did many times as a person: unrealistic plans, obvious failure which anyone sensible could have predicted, frustration, resentment, practical inefficiency. I did it many times, and, obviously, whole societies are perfectly able to do it collectively. Action is key to success. A good plan is the plan which utilizes and reinforces the skills and capacities I already have, makes those skills into recurrent patterns of action, something like one good thing done per day, whilst clearly defining the skills I need to learn in order to be even more complete and more efficient in what I do. A good public policy, just as a good business strategy, should work in the same way.

When we talk about energy efficiency, or about the transition towards renewable energies, what is our action? Like really, what is the most fundamental thing we do together? Do we purposefully increase energy efficiency, in the first place? Do we deliberately transition to renewables? Yes, and no. Yes, at the end of the day we get those outcomes, and no, what we do on a daily basis is something else. We work. We do business. We study in order to get a job, or to start a business. We live our lives, from day to day, and small outcomes of that daily activity pile up, producing big cumulative change.   

Instead of discussing what we do completely wrong, and thus need to change, it is a good direction to discover what we do well, consistently and with visible learning. That line of action can be reinforced and amplified, with good results. The so-far review of literature suggests that research concerning energy and energy transition is progressively changing direction, from the tendency to growing complexity and depth in study, dominant until recently, towards a translation of those complex, in-depth findings into relatively simple decision-making tools for policies and business strategies.

Here comes my method. I think it is important to create an analytical background for policies and business strategies, where we take commonly available empirical data at the macro scale, and use this data to discover the essential, recurrently pursued collective outcomes of a society, in the context of specific social goals. My point and purpose is to nail down a reproducible, relatively simple method of discovering what whole societies are really after. Once again, I think about something simple, which anyone can perform on their computer, with access to Internet. Nothing of that fancy stuff of social engineering, with personal data collected from unaware folks on Facebook. I want the equivalent of a screwdriver in positive, acceptably fair social engineering.

How do I think I can make a social screwdriver? I start with defining a collective goal we think we should pursue. In the specific case of my research on energy it is the transition to renewable sources. I nail down my observation of achievement, regarding that goal, with a simple metric, such as e.g. the percentage of renewables in total energy consumed (https://data.worldbank.org/indicator/EG.FEC.RNEW.ZS ) or in total electricity produced (https://data.worldbank.org/indicator/EG.ELC.RNEW.ZS ). I place that metric in the context of other socio-economic variables, such as GDP per capita, average hours worked per person per year etc. At this point, I make an important assumption as regards the meaning of all the variables I use. I assume that if a lot of humans go to great lengths in measuring something and reporting those measurements, it must be important stuff. I know, sounds simplistic, yet it is fundamental. I assume that quantitative variables used in social sciences represent important aspects of social life, which we do our best to observe and understand. Importance translates as significant connection to the outcomes of our actions.

Quantitative variables which we use in social sciences represent collectively acknowledged outcomes of our collective action. They inform about something we consistently care about, as a society, and, at the same time, something we recurrently produce, as a society. An array of quantitative socio-economic variables represents an imperfect, and yet consistently construed representation of complex social reality.

We essentially care about change. Both individual human nervous systems, and whole cultures, are incredibly accommodative. When we stay in a really strange state long enough to develop adaptive habits, that strange state becomes normal. We pay attention to things that change, whence a further hypothesis of mine that quantitative socio-economic variables, even if arithmetically they are local stationary states, serve us to apprehend gradients of change, at the level of collective, communicable cognition.

If many different variables I study serve to represent, imperfectly but consistently, the process of change in social reality, they might zoom on the right thing with various degrees of accuracy. Some of them reflect better the kind of change that is really important for us, collectively, whilst some others are just sort of accurate in representing those collectively pursed outcomes. An important assumption pops its head from between the lines of my writing: the bridging between pursued outcomes and important change. We pay attention to change, and some types of change are more important to us than others. Those particularly important changes are, I think, the outcomes we are after. We pay the most attention, both individually and collectively, to phenomena which bring us payoffs, or, conversely, which seriously hamper such payoffs. This is, once again on my path of research, a salute to the Interface Theory of Perception (Hoffman et al. 2015[2]; Fields et al. 2018[3]).

Now, the question is: how to extract orientations, i.e. objectively pursued collective outcomes, from that array of apparently important, structured observations of what is happening to our society? One possible method consists in observing trends and variance over time, and this is what I had very largely done, up to a moment, and what I always do now, with a fresh dataset, as a way of data mining. In this approach, I generally assume that a combination of relatively strong variance with strong correlation to the remaining metrics, makes a particular variable likely to be the driving undertow of the whole social reality represented by the dataset at hand.

Still, there is another method, which I focus on in my research, and which consists in treating the empirical dataset as a complex and imperfect representation of the way that collectively intelligent social structures learn by experimenting with many alternative versions of themselves. That general hypothesis leads to building supervised, purposefully biased experiments with that data. Each experiment consists in running the dataset through a specifically skewed neural network – a perceptron – where one variable from the dataset is the output which the perceptron strives to optimize, and the remaining variables make the complex input instrumental to that end. Therefore, each such experiment simulates an artificial situation when one variable is the desired and collectively pursued outcome, with other variables representing gradients of change subservient to that chief value.

When I run such experiments with any dataset, I create as many transformed datasets as there are variables in the game. Both for the original dataset, and for the transformed ones, I can calculate the mean value of each variable, thus construing a vector of mean expected values, and, according to classical statistics, such a vector is representative for the expected state of the dataset in question. I end up with both the original dataset and the transformed ones being tied to the corresponding vectors of mean expected values. It is easy to estimate the Euclidean distance between those vectors, and thus to assess the relative mathematical resemblance between the underlying datasets. Here comes something I discovered more than assumed: those Euclidean distances are very disparate, and some of them are one or two orders of magnitude smaller than all the rest. In other words, some among all the supervised experiments done yield a simulated state of social reality much more similar to the original, empirical one than all the other experiments. This is the methodological discovery which underpins my whole research in this article, and which emerged as pure coincidence, when I was working on a revised version of another paper, titled ‘Energy efficiency as manifestation of collective intelligence in human societies’, which I published with the journal ‘Energy’(https://doi.org/10.1016/j.energy.2019.116500 ).

My guess from there was – and still is – that those supervised experiments have disparate capacity to represent the social reality I study with the given dataset. Experiments which yield mathematical transformations relatively the most similar to the original set of empirical numbers are probably the most representative. Once again, the mathematical structure of the perceptron used in all those experiments is rigorously the same, and what makes the difference is the focus on one particular variable as the output to optimize. In other words, some among the variables studied represent much more plausible collective outputs than others.

I feel a bit lost in my own thinking. Good. It means I have generated enough loose thoughts to put some order in them. It would be much worse if I didn’t have thoughts to put order in. Productive chaos is better than sterile emptiness. Anyway, the reproducible method I want to present and validate in my article ‘Climbing the right hill – an evolutionary approach to the European market of electricity’ aims at discovering the collectively pursued social outcomes, which, in turn, are assumed to be the key drivers of social change, and the path to that discovery leads through the hypothesis that such outcomes are equivalent to specific a gradient of change, which we collectively pay particular attention to in the complex social reality, imperfectly represented with an array of quantitative socio-economic variables. The methodological discovery which I bring forth in that reproducible method is that when any dataset of quantitative socio-economic variables is being transformed, with a perceptron, into as many single-variable-optimizing transformations as there are variables in the set, 1 ÷ 3 among those transformations are mathematically much more similar to the original set of observations that all the other thus transformed sets. Consequently, in this method, it is expected to find 1 ÷ 3 variables which represent – much more plausibly than others – the possible orientations, i.e. the collectively pursued outcomes of the society I study with the given empirical dataset.

Ouff! I have finally spat it out. It took some time. The idea needed to ripe, intellectually. As it is ripe, I can harvest.


[1] Rosales-Asensio, E., de la Puente-Gil, Á., García-Moya, F. J., Blanes-Peiró, J., & de Simón-Martín, M. (2020). Decision-making tools for sustainable planning and conceptual framework for the energy–water–food nexus. Energy Reports, 6, 4-15. https://doi.org/10.1016/j.egyr.2020.08.020

[2] Hoffman, D. D., Singh, M., & Prakash, C. (2015). The interface theory of perception. Psychonomic bulletin & review, 22(6), 1480-1506.

[3] Fields, C., Hoffman, D. D., Prakash, C., & Singh, M. (2018). Conscious agent networks: Formal analysis and application to cognition. Cognitive Systems Research, 47, 186-213. https://doi.org/10.1016/j.cogsys.2017.10.003