Ça fait un sacré bout de temps depuis ma dernière mise à jour en français sur ce blog, « Discover Social Sciences ». Je n’avais pas écrit en français depuis printemps 2020. Pourquoi je recommence maintenant ? Probablement parce que j’ai besoin d’arranger les idées dans ma tête. Il se passe beaucoup de choses, cette année, et j’avais découvert, déjà en 2017, qu’écrire en français m’aide à mettre de l’ordre dans le flot de mes pensées.
Je me concentre sur un sujet que j’avais déjà développé dans le passé et que je vais présenter à une conférence, ce vendredi. Il s’agit du concept que j’avais nommé « Étangs énergétiques » auparavant et que je présente maintenant comme « Projet aqueduc ». Je commence avec une description générale du concept et ensuite je vais passer en revue un peu de littérature récente sur le sujet.
Oui, bon, le sujet. Le voilà. Il s’agit d’un concept technologique qui combine la rétention contrôlée de l’eau dans les écosystèmes placés le long des fleuves et des rivières avec de la génération d’électricité avec les turbines hydrauliques, le tout sur la base des structures marécageuses. Du point de vue purement hydrologique, une rivière est une gouttière qui collecte l’eau de pluie qui tombe sur la surface de son bassin. Le lit de la rivière est une vallée inclinée qui connecte les points le moins élevés du terrain en question et de de fait l’eau de pluie converge des tous les points du bassin fluvial vers l’embouchure de la rivière.
La civilisation humaine sédentaire est largement basée sur le fait que les bassins fluviaux ont la capacité de retenir l’eau de pluie pour un certain temps avant qu’elle s’évapore ou coule dans la rivière. Ça se retient à la surface – en forme des lacs, étangs ou marécages – et ça se retient sous terre, en forme des couches et des poches aquifères diverses. La rétention souterraine dans les poches aquifères rocheuses est naturellement permanente. L’eau retenue dans une couche aquifère reste là jusqu’au moment où nous la puisons. En revanche, la rétention superficielle ainsi que celle dans les couches aquifères souterraines est essentiellement temporaire. L’eau y est ralentie dans sa circulation, aussi bien dans son mouvement physique vers les points les plus bas du bassin local (la rivière du coin) que dans son évaporation vers l’atmosphère. L’existence même des fleuves et des rivières est aussi une manifestation de circulation ralentie. Le lit de la rivière n’arrive pas à évacuer en temps réel toute l’eau qui s’y agglomère et c’est ainsi que les rivières ont de la profondeur : cette profondeur est la mesure de rétention temporaire de l’eau de pluie.
Ces mécanismes fondamentaux fonctionnent différemment en fonction des conditions géologiques. Maintenant, je me concentre sur les conditions que je connais dans mon environnement à moi, donc sur les écosystèmes des plaines et des vallées de l’Europe du Nord, soit grosso modo au nord des Alpes. Ces écosystèmes sont pour la plupart des moraines post-glaciales de fond, donc c’est de la terre littéralement labourée, sculptée et dénivelée par les glaciers. Il n’y a pas vraiment beaucoup de poches aquifères profondes dans la roche de base, en revanche nous avons beaucoup de couches aquifères relativement proches de la surface. Par conséquent, il n’y a pas beaucoup d’accumulation durable de l’eau, à la différence de l’Europe du Sud et de l’Afrique du Nord, où les poches aquifères rocheuses peuvent retenir des quantités importantes d’eau pendant des décennies, voir des siècles. La circulation de l’eau dans ces écosystèmes des plaines est relativement lente – beaucoup plus lente que dans la montagne – ce qui favorise la présence des rivières larges et pas vraiment très profondes ainsi que la formation des marécages.
Dans ces plaines post-glaciales de l’Europe du Nord, l’eau coule lentement, s’accumule peu et s’évapore vite. La forme idéale des précipitations dans ces conditions géologiques c’est de la neige abondante en hiver – qui fond lentement, goutte par goute, au printemps – ainsi que des pluies lentes en longues. La moraine post-glaciale absorbe bien de l’eau qui arrive lentement, mais n’est pas vraiment faite pour absorber des pluies torrentielles. Avec le changement climatique, les précipitations ont changé. Il y a beaucoup moins de neige en hiver en beaucoup plus des pluies violentes. Si nous voulons avoir du contrôle de notre système hydrologique, il nous faut des technologies de rétention d’eau pour compenser des variations temporaires.
Bon, ça c’est le contexte de mon idée et voilà l’idée elle-même. Elle consiste à créer des structures marécageuses semi-artificielles dans la proximité des rivières et les remplir avec de l’eau pompée desdites rivières. La technologie de pompage est celle du bélier hydraulique : une pompe qui utilise l’énergie cinétique de l’eau courante. Le principe général est un truc ancien. D’après ce que j’ai lu à ce sujet, le principe de base, sous la forme de la roue à aubes , fût déjà en usage dans la Rome ancienne, était très utilisé dans les villes Européennes jusqu’à la fin du 18ème siècle. La technologie du bélier hydraulique – une pompe qui utilise ladite énergie cinétique de l’eau dans un mécanisme similaire au muscle cardiaque – fût victime des aléas de l’histoire. Inventée en 1792 par Joseph de Montgolfier (oui, l’un des fameux frères-ballon), cette technologie n’avait jamais eu l’occasion de montrer tous ses avantages. en 1792 (le même qui, quelques années plus tôt, fit voler, avec son frère Étienne, le premier ballon à air chaud). Au 19ème siècle, avec la création des systèmes hydrauliques modernes avec l’eau courante dans les robinets, les technologies de pompage devaient offrir assez de puissance pour assurer une pression suffisante au niveau des robinets et c’est ainsi que les pompes électriques avaient pris la relève. Néanmoins, lorsqu’il s’agit de pomper lentement de l’eau courante des rivières vers les marécages artificiels, le bélier hydraulique est suffisant.
« Suffisant pour faire quoi exactement ? », peut-on demander. Voilà donc le reste de mon idée. Un ou plusieurs béliers hydrauliques sont plongés dans une rivière. Ils pompent l’eau de la rivière vers des structures marécageuses semi-artificielles. Ces marécages servent à retenir l’eau de pluie (qui coule déjà dans le cours de la rivière). L’eau de la rivière que je pompe vers les marécages c’est l’eau de pluie qui avait gravité, en amont, vers le lit de la rivière. Une fois dans les marécages, cette eau va de toute façon finir par graviter vers le lit de la rivière à quelque distance en amont. Pompage et rétention dans les marécages servent à ralentir la circulation de l’eau dans l’écosystème local. Circulation ralentie veut dire que plus d’eau va s’accumuler dans cet écosystème, comme une réserve flottante. Il y aura plus d’eau dans les couches aquifères souterraines, donc plus d’eau dans les puits locaux et – à la longue – plus d’eau dans la rivière elle-même, puisque l’eau dans la rivière c’est l’eau qui y avait coulé depuis et à travers les réservoirs locaux.
Jusqu’à ce point-là, l’idée se présente donc de façon suivante : rivière => bélier hydraulique => marécages => rivière. Je passe plus loin. Le pompage consiste à utiliser l’énergie cinétique de l’eau courante. L’énergie, ça se conserve par transformation. L’énergie cinétique de l’eau courante se transforme en énergie cinétique de la pompe, qui à son tour se transforme en énergie cinétique du flux vers les marécages.
La surface des marécages est placée au-dessus du lit de la rivière, à moins qu’ils ne soient un polder, auquel cas il n’y a pas besoin de pompage. Une fois l’eau est déversée dans les marécages, ceux-là absorbent donc, dans leur masse, l’énergie cinétique du flux qui se transforme en énergie potentielle de dénivellation. Et si nous amplifions ce phénomène ? Si nous utilisions l’énergie cinétique captée par le bélier hydraulique de façon à minimiser la dispersion dans la masse des marécages et de créer un maximum d’énergie potentielle ? L’énergie potentielle et proportionnelle à l’élévation relative. Plus haut je pompe l’eau de la rivière, plus d’énergie potentielle je récupère à partir de l’énergie cinétique du flux pompé. La solution la plus évidente serait une installation de pompage-turbinage, donc le réservoir de rétention devrait être placé sérieusement plus haut que la rivière. Quoi qu’apparemment la plus évidente et porteuse des principes de base intéressants, cette solution a ses défauts en ce qui concerne sa flexibilité et son coût.
Le principe de base à retenir c’est l’idée d’utiliser l’énergie potentielle de l’eau pompée à une certaine élévation comme un de facto réservoir d’énergie électrique. Il suffit de placer des turbines hydro-électriques en aval de l’eau stockée en élévation. En revanche, les installations de pompage-turbinage sont très coûteuses et très exigeantes en termes d’espace. Le réservoir supérieur dans les installations de pompage-turbinage est censé être soit un lac semi-artificiel soit un réservoir complètement artificiel en de tour, certainement pas un marécage. Il est donc temps que j’explique pourquoi je suis tant attaché à cette forme hydrologique précise. Les marécages sont relativement peu chers à créer et à maintenir, tout en étant relativement faciles à placer près de et de combiner avec les habitations humaines. Par « relativement » je veux dire en comparaison au pompage-turbinage.
Le marécage est un endroit symboliquement négatif dans notre culture. Le mal est tapi dans les marécages. Les marécages sont malsains. Ma théorie tout à fait privée à ce sujet est que dans le passé les colonies humaines, fréquemment celles qui ont finalement donné naissance à des villes, étaient localisées près des marécages. Probablement c’était parce que le niveau d’eau souterraine dans des tels endroits est favorablement haut. Il est facile d’y creuser des puits, d’épandre des fossés d’irrigation, petit gibier y abonde. Seulement voilà, lorsque les homo sapiens abondent, ils se différencient inévitablement en hominides rustiques d’une part et les citadins d’autre part. Ce partage est un mécanisme de base de la civilisation humaine. La campagne produit de la nourriture, la ville produit des nouveaux rôles sociaux, à travers interaction intense dans un espace densément peuplé. L’un des aspects fondamentaux de la ville est qu’elle sert de laboratoire expérimental permanent pour nos technologies, à travers la construction et la reconstruction d’immeubles. Oui, l’architecture, en compagnie du textile, du bâtiment naval et de la guerre, ont toujours été les activités humaines par excellence orientées sur l’innovation technologique.
La ville veut donc dire le bâtiment et le bâtiment a besoin de terre vraiment ferme. Les marécages deviennent ennemis. Il faut les assécher et les séparer durablement de la circulation hydrologique naturelle qui les eût formés pendant des millénaires. Les humains et les marécages ce fût donc un mariage naturel au début, suivie par une crise conjugale due à la nécessité d’apprendre comment faire de la technologie nouvelle et maintenant la technologie vraiment nouvelle rend possible une médiation conjugale dans ce couple. Il y a tout un courant de recherche et innovation architecturale, concentré autour des concepts tels que « les jardins de pluie » (Sharma & Malaviya 2021[1] ; Li, Liu & Li 2020[2] ; Venvik & Boogaard 2020[3]) ou « les villes éponges » (Ma, Jiang & Swallow2020[4] ; Sun, Cheshmehzangi & Wang 2020[5]). Nous sommes en train de développer des technologies qui rendent la cohabitation entre villes et marécages non seulement possible mais bénéfique pour l’environnement et pour les citadins en même temps.
Question : comment utiliser le principe de base de pompage-turbinage, donc le stockage d’énergie potentielle de l’eau placée en élévation, sans construire des structures de pompage-turbinage et en présence des structures marécageuses à la limite de la ville et de la campagne ? Réponse : à travers la construction des tours relativement petites et légères, avec des petits réservoirs d’égalisation au sommet de chaque tour. Un bélier hydraulique bien construit rend possible d’élever l’eau par 20 mètres environ. On peut imaginer donc un réseau des béliers hydrauliques installés dans le cours d’une rivière et connectés à des petites tours de 20 mètres chacune, où chaque tour est équipée d’un tuyau de descente vers les marécages et le tuyau est équipé des petites turbines hydro-électriques.
L’idée complète se présente donc comme suit : rivière => bélier hydraulique => l’eau monte => tours légères de 20 mètres avec des petits réservoirs d’égalisation au sommet => l’eau descend => petites turbines hydro-électriques => marécages => l’eau s’accumule => circulation hydrologique naturelle à travers le sol => rivière.
Bon, où est le Catch 22 dans ce jardin d’Eden ? Dans l’aspect économique. Les béliers hydrauliques de bonne qualité, tels qu’ils sont produits aujourd’hui, sont chers. Il y a très peu de fournisseurs solides de cette technologie. La plupart des béliers hydrauliques en utilisation sont des machins artisanaux à faible puissance et petit débit. L’infrastructure des tours de siphonage avec les turbines hydro-électriques de bonne qualité, ça coûte aussi. Si on veut être sérieux côté électricité, faut équiper tout ce bazar avec des magasins d’énergie. Toute l’infrastructure aurait besoin des frais de maintenance que je ne sais même pas comment calculer. Selon mes calculs, la vente d’électricité produite dans ce circuit hydrologique pourrait assurer un retour sur l’investissement pas plus court que 8 – 9 ans et encore, c’est calculé avec des prix d’électricité vraiment élevés.
Faut que j’y pense (plus).
[1] Sharma, R., & Malaviya, P. (2021). Management of stormwater pollution using green infrastructure: The role of rain gardens. Wiley Interdisciplinary Reviews: Water, 8(2), e1507. https://doi.org/10.1002/wat2.1507
[2] Li, J., Liu, F., & Li, Y. (2020). Simulation and design optimization of rain gardens via DRAINMOD and response surface methodology. Journal of Hydrology, 585, 124788. https://doi.org/10.1016/j.jhydrol.2020.124788
[3] Venvik, G., & Boogaard, F. C. (2020). Infiltration capacity of rain gardens using full-scale test method: effect of infiltration system on groundwater levels in Bergen, Norway. Land, 9(12), 520. https://doi.org/10.3390/land9120520
[4] Ma, Y., Jiang, Y., & Swallow, S. (2020). China’s sponge city development for urban water resilience and sustainability: A policy discussion. Science of the Total Environment, 729, 139078. https://doi.org/10.1016/j.scitotenv.2020.139078
[5] Sun, J., Cheshmehzangi, A., & Wang, S. (2020). Green infrastructure practice and a sustainability key performance indicators framework for neighbourhood-level construction of sponge city programme. Journal of Environmental Protection, 11(2), 82-109. https://doi.org/10.4236/jep.2020.112007