L’impression de respirer

J’avance avec la révision de ma recherche sur le phénomène d’intelligence collective, que je viens de documenter dans « The collective of individual humans being any good at being smart ». Je m’efforce à faire jonction entre mes idées à moi, d’une part, et deux autres créneaux de recherche : la théorie des systèmes complexes et l’approche psychologique à l’intelligence collective. La première, je la travaille sur la base du livre ‘What Is a Complex System?’ écrit par James Landyman et Karoline Wiesner, publié en 2020 chez Yale University Press (ISBN 978-0-300-25110-4, Kindle Edition). Quant à l’approche psychologique, ma lecture de référence est, pour le moment, le livre ‘The Knowledge Illusion. Why we never think alone’ écrit par Steven Sloman et Philip Fernbach, publié en 2017 chez RIVERHEAD BOOKS (originellement chez Penguin Random House LLC, Ebook ISBN: 9780399184345, Kindle Edition).

Je viens de cerner l’idée centrale de mon approche au phénomène d’intelligence collective, et c’est l’utilisation des réseaux neuronaux artificiels – donc de l’Intelligence Artificielle – comme simulateurs des phénomènes sociaux complexes. La touche originale bien à moi que je veux ajouter à ce sujet, vaste par ailleurs, est la façon d’utiliser des réseaux neuronaux très simples, possibles à programmer dans une feuille de calcul Excel. Ma méthode va donc un peu à l’encontre du stéréotype des super-nuages numériques portés par des super-ordinateurs joints eux-mêmes en réseau, tout ça pour prédire la prochaine mode vestimentaire ou la prochaine super-affaire en Bourse.

Lorsque je pense à la structure d’un livre que je pourrais écrire à ce sujet, le squelette conceptuel qui me vient à l’esprit est du scientifique classique. Ça commence avec une « Introduction » générale et peu formelle, genre montrer pourquoi faire tout ce bruit à propos de l’idée en question. Une section de « Matériel empirique et méthode » ensuit, ou je discute le type de données empiriques à travailler avec ainsi que la méthode de leur traitement. Le pas suivant est de présenter « La théorie et revue de littérature du sujet » en un chapitre séparé et enfin des « Exemples d’application », soit des calculs faits sur des données réelles avec la méthode en question.     

Le noyau conceptuel formel de mon approche est – pour le moment – la fonction d’adaptation. Lorsque j’ai un ensemble de variables socio-économiques quantitatives, je peux faire des assomptions plus ou moins fortes à propos de leur signification et pertinence empirique, mais je peux assumer de manière tout à fait solide que chacune de ces variables peut représenter un résultat fonctionnel important, dont l’achèvement nous poursuivons comme société. En présence de « n » variables que peux poser « n » hypothèses du type : ces gens-là poursuivent l’optimisation de la variable « i » comme orientation collective. Une telle hypothèse veut dire que toutes les variables dans l’ensemble X = (x1, x2, …, x­n), observées dans une séquence de « m » occurrences locales (t1, t2,…, tm), forment une chaîne d’états fonctionnels locaux f{x1(t), x2(t), …, x­n(t)}.  La société étudiée compare chaque état fonctionnel local à une valeur espérée de résultat xi(t) et la fonction d’adaptation produit l’erreur locale d’adaptation e(t) = xi(t)f{x1(t), x2(t), …, x­n(t)}.  La variable « xi » fait partie de l’ensemble X = (x1, x2, …, x­n). La chaîne d’états fonctionnels f{x1(t), x2(t), …, x­n(t)} est donc produite aussi bien avec la variable optimisée « xi » elle-même qu’avec les autres variables. La logique de ceci est simple : la plupart de phénomènes sociaux que nous décrivons avec des variables quantitatives, tel le Produit National Brut (mon exemple préféré), démontrent une hystérèse significative. Le PNB d’aujourd’hui sert à produire le PNB de l’après-demain, tout comme le nombre des demandes de brevet d’aujourd’hui contribue à créer le même PNB de l’après-demain.

J’essaie de faire un rapprochement entre la théorie des systèmes complexes et ma méthode à moi. Je me réfère en particulier à ‘What Is a Complex System?’ (Landyman, Wiesner 2020). Le passage que je trouve particulièrement intéressant vu ma propre méthode est celui de la page 16, que je me permets de traduire sur le champ : « Comportement coordonné ne requiert pas de contrôleur suprême […] Il est surprenant que le mouvement collectif d’une volée d’oiseaux, d’un banc de poissons ou d’un essaim d’insectes peut être reproduit par un ensemble de robots programmés à obéir juste quelques règles simples. Chaque individu doit rester près d’une poignée des voisins et ne peut pas heurter d’autres individus. Comme l’individu avance, il contrôle régulièrement sa distance par rapport aux autres pour l’ajuster de façon correspondante. En conséquence, un mouvement de groupe se forme spontanément. Le comportement adaptatif du collectif surgit d’interactions répétées, dont chacune est relativement simple en elle-même […] ».

Le truc intéressant, là, c’est que je fais exactement la même opération logique dans les réseaux neuronaux que je fais et utilise dans ma recherche sur l’intelligence collective. A l’intérieur de chaque occurrence empirique dans mon ensemble de données (donc, de façon pratique, dans chaque vers de ma base de données), je calcule en ensuite je propage un méta-paramètre de distance Euclidienne entre chaque variable et toutes les autres. Le Produit Intérieur Brut en Suède en 2007 vérifie donc sa distance Euclidienne par rapport à l’inflation, au taux d’emploi etc., tout ça en Suède en 2007. Le PIB dans mon réseau neuronal se comporte donc comme un oiseau : ça vole de façon à contrôler sa distance par rapport aux autres phénomènes sociaux.

Chaque vers de la base de données est donc accompagné d’un vecteur-fantôme des distances Euclidiennes, qui est ensuite utilisé par le réseau comme information pertinente à la tentative d’adaptation dans l’occurrence empirique suivante, donc dans le vers suivant de la base des données. Initialement, lorsque je programmais ce truc, je ne savais pas ce que ça va donner. Je ne savais presque rien de cet aspect particulier de la théorie de complexité. Je venais juste de lire quelques articles sur la théorie d’essaim dans la programmation des robots et je voulais voir comment ça marche chez moi (Wood & Thompson 2021[1]; Li et al. 2021[2]).  Je m’adaptais juste de façon (probablement) intelligente au flot de mes propres pensées. Il se fait que la propagation de ces distances Euclidiennes locales entres les variables impacte le réseau et son apprentissage de façon profonde.

Voilà donc un point certain de rapprochement entre ma méthode d’utiliser les réseaux neuronaux artificiels pour simuler l’intelligence collective et la théorie des systèmes complexes. Lorsque je crée, pour un ensemble des variables quantitatives socio-économiques, un ensemble fantôme accompagnant des distances mathématiques locales entre ces variables et je propage ces distances à travers le réseau, les nombres apprennent de façon accélérée.          

Une petite explication est de rigueur, à propos de la notion de distance mathématique. Moi, j’utilise la distance Euclidienne entre les nombres simples. Dans le domaine du Data Science c’est l’équivalent de la pierre taillée. Il y a des mesures beaucoup plus sophistiquées, ou une distance Euclidienne est calculée entre des matrices entières des nombres. Moi, j’aime bien utiliser le type d’intelligence artificielle que je comprends.

Je peux donc résumer un point important de ma méthode, tout en l’enracinant dans la théorie des systèmes complexes. Nous pouvons imaginer les sociétés humaines comme des essaims des phénomènes que nous observons de façon imparfaite à travers des variables quantitatives. L’essaim des phénomènes s’auto-organise à travers les actions d’êtres humains qui contrôlent, de façon imparfaite et néanmoins cohérente, quelle est la distance (cohérence mutuelle) entre les phénomènes distincts. Le fait que chaque culture humaine s’efforce de créer et maintenir une cohérence interne est donc le mécanisme de contrôle qui facilite l’émergence des systèmes complexes.

Mon intuition à moi, lorsque j’introduisais ces mesures-fantômes de distance Euclidienne entre les variables était un peu contraire, en fait. Mon truc, depuis ma thèse de doctorat, c’est l’innovation et le changement technologique. Après avoir lu ces articles sur la théorie d’essaim je me suis dit que l’innovation survient lorsqu’une société se dit (collectivement) « Merde ! Ras le bol avec la monotonie ! Faut secouer tout ça un peu ! Eh, les gars ! Oui, vous ! On veut dire : oui, nous ! On relâche la cohérence interne ! Oui, juste pour quelques années, pas de souci ! Oui, merde, on vous (nous) promet de ne pas inventer Facebook, enfin on espère… ».  

La société que je représente avec un réseau neuronal est donc capable d’innovation parce qu’elle peut relâcher sa cohérence culturelle interne juste ce qu’il faut pour laisser entrer des phénomènes nouveaux. Ce que j’observe mathématiquement dans mes simulations avec des données socio-économiques réelles : lorsque je propage la distance Euclidienne entre les variables à travers le réseau, celui-ci donne l’impression de respirer. Ça se gonfle et ça se dégonfle, en cadence rythmique.  


[1] Wood, M. A., & Thompson, C. (2021). Crime prevention, swarm intelligence and stigmergy: Understanding the mechanisms of social media-facilitated community crime prevention. The British Journal of Criminology, 61(2), 414-433.  https://doi.org/10.1093/bjc/azaa065

[2] Li, M., Porter, A. L., Suominen, A., Burmaoglu, S., & Carley, S. (2021). An exploratory perspective to measure the emergence degree for a specific technology based on the philosophy of swarm intelligence. Technological Forecasting and Social Change, 166, 120621. https://doi.org/10.1016/j.techfore.2021.120621

Leave a Reply