Que je finisse de façon bien élégante

Me revoilà avec l’idée de faire un rapprochement théorique entre mon « Projet Aqueduc » et ma recherche sur le phénomène d’intelligence collective. Comme je passe en revue ce que j’ai écrit jusqu’à maintenant sur les deux sujets, des conclusions provisoires se forment dans ma tête. L’idée primordiale est que je ne suis pas sûr du tout si mon « Projet Aqueduc » n’est pas, par le plus grand des hasards, une connerie déguisée. Comme je fais de la recherche sur le business d’énergies renouvelables, j’ai pu constater maintes fois qu’à part l’écologie fonctionnelle et pragmatique il y a une écologie religieuse, quelque chose comme l’Église Généralisée de la Mère Nature. Moi je veux rester dans le fonctionnel. Je n’achète pas vraiment l’argument que toute solution « naturelle » est meilleure qu’une « artificielle ». Le retour à la nature que tellement de mes amis prêchent comme une confession de foi c’est aussi le retour à la tuberculose et à l’absence de canalisation.

Je pense donc que « Projet Aqueduc » est une idée intéressante pour expérimenter avec mais pas vraiment une solution complète à optimaliser. L’idée d’utiliser un algorithme génétique du type NSGA-II ou « Non-dominated Sorting Genetic Algorithm » (comparez : Chang et al. 2016[1]; Jain & Sachdeva 2017[2];  Assaf & Shabani 2018[3]; Zhou et al. 2019[4]), que j’avais formulée au début de juillet ( We keep going until we observe du 5 juillet) serait prématurée. Le « Projet Aqueduc » est une chaîne complexe des technologies dont certaines sont plutôt certaines – pardonnez le jeu de mots – pendant que d’autres sont très incertaines dans leur développement général ainsi que leur application exacte dans ce contexte spécifique.    

Je pense que je vais me concentrer sur la mise au point d’une méthode de vérifier la faisabilité du concept en question dans la phase où il est actuellement, donc dans la phase d’expérimentation initiale, tôt dans le cycle de développement. Une telle méthode pourrait être appliquée à l’étude de faisabilité d’autres technologies en phase de développement expérimental. Le « Projet Aqueduc » présente un défi intellectuel intéressant de ce point de vue. L’une des dimensions importantes de ce concept est sa taille physique, surtout la quantité d’eau retenue dans les structures marécageuses qui agissent comme des pseudo-réservoirs hydrologiques (Harvey et al. 2009[5]; Phiri et al. 2021[6] ; Lu et al. 2021[7]; Stocks et al. 2021[8]). Plus nous expérimentons avec la taille physique des installations, plus grands sont les risques liés à cette expérimentation. Tester une installation de petite taille pour le « Projet Aqueduc » engendre des risques négligeables mais en même temps n’apporte pas vraiment de données empiriques sur ce qui se passe dans une installation de taille autrement plus substantielle. C’est donc un cas où – apparemment au moins – je dois expérimenter avec des risques de plus en plus élevés pour acquérir des données sur ce qui peut se passer si ces risques se consument en vie réelle. Voilà un casse-tête digne de ce nom.

En termes de défi intellectuel, j’en ai un autre, tombé un peu à l’improviste. Le journal « International Journal of Energy Sector Management » vient de me demander de donner un dernier coup de pinceau, avant la publication, à mon article intitulé « Climbing the right hill – an evolutionary approach to the European market of electricity ». Les recommandations du réviseur ainsi que celles du rédacteur responsable sont à peu près homogènes et se résument à donner plus de clarté à mon texte, de façon à le rendre plus facile à approcher pour des lecteurs non-initiés à la méthode que j’y utilise. Je relève le gant pour ainsi dire et je vais essayer de résumer le manuscrit en français, de façon aussi claire que possible. J’espère que ça va me donner un bon point de départ pour faire la révision finale de mon manuscrit en anglais.

Je commence par le résumé d’en-tête, donc ce qui s’appelle « abstract » en jargon scientifique anglais. L’article étudie changement socio-économique comme phénomène évolutif et plus précisément comme une marche adaptative en paysage rugueux, avec l’assomption d’intelligence collective et en vue d’optimiser la participation d’électricité dans la consommation totale de l’énergie ainsi que la participation des sources renouvelables dans la consommation d’électricité. Une méthode originale est présentée, où un réseau neuronal artificiel est utilisé pour produire des réalités alternatives à partir de l’ensemble originel de données empiriques. La distance Euclidienne entre ces réalités alternatives et la réalité empirique est utilisée comme base pour évaluer les objectifs collectifs. La variance de distance Euclidienne entre variables est utilisée comme base pour évaluer l’intensité d’interactions épistatiques entre les phénomènes représentés avec les variables. La méthode est testée dans un échantillon de 28 pays européens, entre 2008 et 2017, en présence d’imperfections du marché au niveau des prix de détail d’électricité. Les variables-clés, pertinentes à l’énergie, semblent être instrumentales par rapport à la poursuite d’autres valeurs collectives et ces dernières semblent se concentrer sur l’intensité de travail ainsi que sa rémunération.

Voilà un résumé bien scientifique. J’avoue : si je n’avais pas écrit cet article moi-même, je n’y comprendrais que dalle, à ce résumé. Pas étonnant que le réviseur et le rédacteur responsable me demandent gentiment de simplifier et de clarifier. Où commence-je donc ? Voilà une question qui mérite un peu de réflexion. Je pense qu’il faut que recule dans le temps et que je me souvienne le cheminement logique que j’avais pris, il y a un an et demi, lorsque j’avais écrit la première version de cet article. Oui, un an et demi. La science, ça traine parfois. Les idées-éclair, ça ralentit considérablement dans la phase de publication.

Je recule donc dans le temps. Il y avait deux trucs en concours, pour ainsi dire. D’une part, j’étais content après la publication d’un article chez « Energy », un journal bien respectable, sous le titre « Energy efficiency as manifestation of collective intelligence in human societies ». La méthode que j’y avais utilisée était largement la même que dans cet article chez « International Journal of Energy Sector Management », auquel je suis en train de donner une touche finale. Un réseau neuronal artificiel produit des simulations d’intelligence collective des sociétés humaines. Chaque simulation est une sorte de réalité alternative orientée sur l’optimisation d’une variable spécifique. Chaque réalité alternative demeure à une certaine distance mathématique de la réalité empirique. J’assume que celles qui sont les plus proches reflètent le mieux les rapports entre les variables empiriques. Puisque ce rapport est en fait une orientation – la poursuite d’optimisation d’une variable précise – j’interprète le tout comme une évolution collectivement intelligente avec un système de valeurs collectives.

Les résultats empiriques que j’avais obtenus dans cet article chez « Energy » étaient un peu surprenants, mais juste un peu. Les économies nationales que j’étudiais semblaient être orientés sur l’optimisation de rapport entre le flux d’invention scientifique et la capitalisation des entreprises (coefficient du nombre des demandes domestique de brevet par un million de dollars en actifs productifs fixes) plus que tout le reste. L’efficience énergétique, mesurée à l’échelle d’économies nationales, semblait être le cadet des soucis de lesdites économies nationales, pour ainsi dire. En général, ces 59 pays que j’avais pris sous ma loupe, démontraient bien une croissance d’efficience énergétique, mais cette amélioration semblait être un effet secondaire obtenu dans la poursuite d’équilibre local entre la science mûre (pour demander des brevets) et l’investissement.

Le catalogue des variables que j’avais pris en considération dans « Energy efficiency as manifestation of collective intelligence in human societies » était plutôt restreint. J’avais étudié 14 variables, dont la plupart étaient là en raison d’assomptions que j’avais prises à propos du contexte socio-économique de l’efficience énergétique. Alors, je m’étais posé la question suivante : qu’est-ce qui va se passer si je prends une poignée des variables pertinentes au secteur d’énergie, dans un contexte plus ou moins environnemental, et je les plonge dans un bain commun avec un catalogue vraiment large des variables macroéconomiques ? Côté méthode, c’est une approche classique dans la science. Un truc marche avec des assomptions bien serrées et le pas suivant est de tester le même truc avec des assomptions plus relax, genre pas trop d’idées préconçues.

En ce qui concerne le catalogue exhaustif des variables macroéconomiques, Penn Tables 9.1. (Feenstra et al. 2015[9]), avec 49 variables du type classique (Produit National, inflation, le marché d’emploi etc.) semblaient être une source convenable. J’avais déjà expérimenté avec cette base des données et ma méthode d’étudier l’intelligence collective en produisant des réalités alternatives avec un réseau neuronal et j’avais obtenu des résultats intéressants. Je les avais décrits dans un manuscrit plutôt technique intitulé « The Labour Oriented, Collective Intelligence of Ours : Penn Tables 9.1 Seen Through the Eyes of A Neural Network ». Il semble que les économies nationales de quelques 168 pays décrits dans Penn Tables 9.1 sont orientées sur l’optimalisation du marché de l’emploi plus que sur quoi que ce soit d’autre. Les variables dont l’optimalisation produit des réalités alternatives les plus proches de la réalité empirique sont, dans ce cas : le nombre moyen d’heures ouvrables par année par personne, la participation des salaires dans le Revenu National Brut et finalement le coefficient de capital humain, qui mesure le nombre moyen d’années d’éducation que les jeunes gens ont dans leur CV au moment d’entrer le marché d’emploi.

Encore une fois : lorsque la plupart d’économistes développent sur le sort horrible des travailleurs dans un monde dominé par des capitalistes rapaces sans pitié ni conscience, ma méthode suggérait le contraire, donc un monde orienté sur le travail et les travailleurs, beaucoup plus que sur l’optimalisation du retour interne sur l’investissement, par exemple. Ma méthode donnait donc des résultats surprenants avec des données empiriques tout à fait classiques. J’étais donc bien sûr que les résultats tout aussi surprenants que j’avais présenté dans « Energy efficiency as manifestation of collective intelligence in human societies » n’étaient pas le résultat de mon propre biais cognitif au niveau du matériel empirique de base mais bel et bien le résultat d’une méthode originale de recherche.

Ces résultats en main, je me demandais comment faire un rapprochement avec le secteur d’énergie. A l’époque, j’avais participé à un colloque public à propos des voitures électriques. Le colloque lui-même n’était pas vraiment excitant, mais après j’ai eu une discussion très intéressante avec mon fils. Le fiston avait dit : « En Europe, on n’a pas de notre pétrole bien à nous. Nous avons un système de transport routier très dense, presque entièrement dépendant d’une source d’énergie que nous devons importer, donc sur le pétrole. Comme risque stratégique, c’en est un gros ». Je me suis dit : il a raison, mon fiston. Encore une fois. C’est agaçant. Faut que je fasse quelque chose. Les voitures électriques, ça a besoin d’électricité et donc la participation d’électricité dans la consommation totale d’énergie serait un bon indicateur de notre préparation à passer vers les véhicules électriques, en Europe. Je peux prendre Penn Tables 9.1. (Feenstra et al. 2015 op. cit.), en extraire les données à propos des pays Européens, ajouter des variables pertinentes au secteur d’énergie et voilà : je peux tester l’hypothèse générale que ces variables énergétiques sont des orientations significative dans l’intelligence collective des pays Européens.    

Il y avait un autre truc, en fait. Ça fait déjà un bout de temps que j’ai fait attention aux prix d’électricité en Europe, et plus précisément à la différence très marquée entre les prix pour petits consommateurs d’énergie, calibre ménages, d’une part, et les prix réservés aux usagers plus grands. Vous pouvez consulter, à ce sujet, ma mise à jour du 28 Juin 2018 : « Deux cerveaux, légèrement différents l’un de l’autre ». C’est une imperfection du marché en une forme classique. J’avais donc décidé d’ajouter les prix d’électricité en Europe à cet ensemble déjà bien hétéroclite et voilà que ça a commencé.

Bon, j’ai reconstitué à peu de choses près le raisonnement originel qui m’a poussé à écrire cet article « Climbing the right hill – an evolutionary approach to the European market of electricity ». Si je sais comment j’avais commencé, il y a des chances que je finisse de façon bien élégante.  


[1] Chang, F. J., Wang, Y. C., & Tsai, W. P. (2016). Modelling intelligent water resources allocation for multi-users. Water resources management, 30(4), 1395-1413. https://doi.org/10.1007/s11269-016-1229-6

[2] Jain, V., & Sachdeva, G. (2017). Energy, exergy, economic (3E) analyses and multi-objective optimization of vapor absorption heat transformer using NSGA-II technique. Energy Conversion and Management, 148, 1096-1113. https://doi.org/10.1016/j.enconman.2017.06.055

[3] Assaf, J., & Shabani, B. (2018). Multi-objective sizing optimisation of a solar-thermal system integrated with a solar-hydrogen combined heat and power system, using genetic algorithm. Energy Conversion and Management, 164, 518-532. https://doi.org/10.1016/j.enconman.2018.03.026

[4] Zhou, Y., Chang, L. C., Uen, T. S., Guo, S., Xu, C. Y., & Chang, F. J. (2019). Prospect for small-hydropower installation settled upon optimal water allocation: An action to stimulate synergies of water-food-energy nexus. Applied Energy, 238, 668-682. https://doi.org/10.1016/j.apenergy.2019.01.069

[5] Harvey, J.W., Schaffranek, R.W., Noe, G.B., Larsen, L.G., Nowacki, D.J., O’Connor, B.L., 2009. Hydroecological factors governing surface water flow on a low-gradient floodplain. Water Resour. Res. 45, W03421, https://doi.org/10.1029/2008WR007129.

[6] Phiri, W. K., Vanzo, D., Banda, K., Nyirenda, E., & Nyambe, I. A. (2021). A pseudo-reservoir concept in SWAT model for the simulation of an alluvial floodplain in a complex tropical river system. Journal of Hydrology: Regional Studies, 33, 100770. https://doi.org/10.1016/j.ejrh.2020.100770.

[7] Lu, B., Blakers, A., Stocks, M., & Do, T. N. (2021). Low-cost, low-emission 100% renewable electricity in Southeast Asia supported by pumped hydro storage. Energy, 121387. https://doi.org/10.1016/j.energy.2021.121387

[8] Stocks, M., Stocks, R., Lu, B., Cheng, C., & Blakers, A. (2021). Global atlas of closed-loop pumped hydro energy storage. Joule, 5(1), 270-284. https://doi.org/10.1016/j.joule.2020.11.015

[9] Feenstra, Robert C., Robert Inklaar and Marcel P. Timmer (2015), “The Next Generation of the Penn World Table” American Economic Review, 105(10), 3150-3182, available for download at http://www.ggdc.net/pwt 

Leave a Reply