Living next door to such small success

Just two updates ago, I was trying to combine my work on the technological concept which I labelled ‘Energy Ponds’ AKA ‘Project Aqueduct’, with more theoretical a strand of research on collective intelligence in human societies. A third component thread has come into the game, a bit as a surprise. The editor of ‘International Journal of Energy Sector Management’ has just asked me to give a final revision to the manuscript which I am about to publish with them, titled ‘Climbing the right hill – an evolutionary approach to the European market of electricity’. More specifically, the editor asks me to refine the style of the paper, so as to make it more accessible to non-initiated readers.

I think I am smart. Many people think they are. I know I tend to overestimate my work capacity, though. I need an intellectual synthesis for all the three things: ‘Energy Ponds’, research on collective intelligence, and the final revision of my article. I need some kind of common denominator over which I could put and denominate all that intellectual stuff. I focus on the phenomenon of technological change. My most fundamental intuition about technological change is that it happens as a by-product of us, humans, collectively pursuing some other outcomes. I perceive technology as an emergence (not to confound with emergency) which happens when human societies reach a given level of complexity. Technologies are complex ways human interaction with the broadly spoken natural environment, i.e. with both natural resources and natural constraints.

I am rummaging in my most personal cases of technological change, namely my idea of ‘Energy Ponds’, and my investment decisions in the stock market. Non-linearity of change keeps floating to the surface. When the most obvious path of development in a technology is tight optimization through a sequence of small incremental improvements in efficiency, that technology is close to maturity in its lifecycle, and is not much of a big deal anymore. The truly promising technologies, those able to wake up the neighbours, are those with yet unclear prospects for optimization, with different alternative paths of experimentation in view.

Deep technological change occurs as non-linear path of experimentation in collective human interaction with both natural resources and natural constraints. Non-linearity means uncertainty, and uncertainty implies alternative states of nature, spread over a broad spectrum of outcomes. Them Black Swans are just waiting around the street corner. Deep technological change can play out according to different scenarios. We tend to think about scenarios as sequences, only with technological change the sequence is highly speculative, and the more uncertain the further we go from the starting point. There is another way of defining a scenario, namely as an orientation, a social force which pushes in a specific direction.

I start connecting the dots. Deep, break-through technological change practically never happens as a clearly purposeful collective strategy. It is always a disruption, and it takes us by surprise. Technological change happens as a sudden shortcut to achieve whatever collective outcomes we are after. People who invented the wheel probably didn’t want to invent the wheel as such, they were after a better way of transportation by land. Internet was invented because scientists started to work in large, dispersed networks of labs and needed a fast communication system for a lot of content.

Thus, we are after something, and, accidentally, we invent something else, which makes ripples across the social structure. We use the transformational force conveyed in those ripples to keep pursuing the same collective outcomes. It is interesting to notice that a new technology is practically never superior per se to the incumbent solutions. Social improvement happens only when human societies wrap themselves around that novel stuff and learn how to use it. Let’s suppose that a benevolent and very advanced alien race hands out to us a technology to travel between parallel universes. Looks cool, at the first sight. When we think about it longer, though, questions arise. What are the practical benefits of travelling between parallel universes? It is only when we figure out those benefits that we start absorbing that otherwise revolutionary technology.

I double back a bit on my own words. Deep technological change is essentially disruptive and surprising, and yet there is more to technological change than just the deep and disruptive kind. Periods of grinding, progressive optimization come after and between deep technological ripples. Here, I ask: why? Why the hell having all that business of technological change? It is interesting to notice that rapid technological change makes rifts in space just as it does in time. There are places on this planet where humans have been living for quite a few millennia without inventing s**t. It is even more interesting to notice that some among those no-progress lands used to be quite the opposite in the past. Amazonian jungle is a good example. Pre-Colombian people (i.e. people who used to live there before they learnt they had just been discovered) had a thriving civilization, with a lot of innovations up their sleeve, such as altitude specific agriculture in terraced fields, or written communication using pieces of string. Afghanistan (hic!) is another example. Centuries before Pythagoras figured out his angles and them square roots from sums of square powers, the place which we call ‘Afghanistan’ today used to be a huge mining hub, providing tin to all of the Bronze Age civilization in the Mediterranean and the Levant.

My point is that we, humans, need a good kick where it really hurts, plus some favourable conditions to recover when it really hurts, and then we start inventing stuff. Still, many of us can pass entire epochs (literally epochs) without figuring out anything new. As I like surfing through literature as I write, a few quotes come to my mind, out of the books I am reading now. Out of ‘The Black Swan. The impact of the highly improbable’ by Nassim Nicolas Taleb , Penguin, 2010, I have that passage from page 114: “Consider the following: of all the colorful adventurers who have lived on our planet, many were occasionally crushed, and a few did bounce back repeatedly. It is those who survive who will tend to believe that they are indestructible; they will have a long and interesting enough experience to write books about it. Until, of course … Actually, adventurers who feel singled out by destiny abound, simply because there are plenty of adventurers, and we do not hear the stories of those down on their luck”. The point is that we mostly know about technological change we know, as it were. The folds of history, which we tend to smooth out ex post, cover thousands of episodes when inventions simply didn’t work. I wonder how many people got mauled to death before someone finally nailed down the right way to make big, strong oxen pull heavy carts on wheels.

The adventure of technological change plays out favourably just sometimes, and yet we keep trying. Here come two quotes from another book: ‘The Knowledge Illusion. Why we never think alone’ by Steven Sloman and Philip Fernbach, RIVERHEAD BOOKS (An imprint of Penguin Random House LLC, Ebook ISBN: 9780399184345, Kindle Edition). On page page 133 thereof a whole new chapter starts under the provocative title: Technology as an Extension of Thought. It goes: ‘The mastery of new technology has gone hand in hand with the evolution of our species. According to Ian Tattersall, curator emeritus with the American Museum of Natural History in New York, “cognitive capacity and technology reinforced each other” as civilization developed. Genetic evolution and technological change have run in tandem throughout our evolutionary history. As brains increased in size from one hominid species to its descendants, tools became more sophisticated and more common. Our predecessors started using rocks with sharp edges. Later generations discovered fire, stone axes, and knives, followed by harpoons and spears, then nets, hooks, traps, snares, and bows and arrows, and eventually farming. Each of these technological changes was accompanied by all the other changes that led to the modern human being: cultural, behavioral, and genetic changes’. A few pages further, p. 150, the same authors write about the modern technology of crowdsourcing: ‘The power of crowdsourcing and the promise of collaborative platforms suggest that the place to look for real superintelligence is not in a futuristic machine that can outsmart human beings. The superintelligence that is changing the world is in the community of knowledge’.

It seems that we, humans, invent new things just because we can, just because we are biologically wired for it. Still, that creative interaction with our environment is full of failures, which, from time to time, produce some timid successes. The local humans, living next door to such small success, have the drive and the capacity to put a big fire up, starting from such a small spark. Once it has worked, deep technological rift happens, which transforms civilizations.

As I return to the final revision of the manuscript which I am about to publish with them, titled ‘Climbing the right hill – an evolutionary approach to the European market of electricity’, for the ‘International Journal of Energy Sector Management’, I wonder how to describe the kind of technological change which I write about in that paper, namely the development of renewable energies and the transition to electricity from the straightforward use of fossil thermal energy, in the European market. What I see in the empirical data is a historically short window of progress which, whilst being a bit bumpy, generally follows an upward trend. As I look at all of my so-far research on collective intelligence, it is largely the same. I have been studying historically short windows of technological change which generally looks like progress with some minor accidents on the way. On the other hand, when I refer to my ‘Energy Ponds’ concept and to the feasibility studies I am running for it, it is the deep-ripple type. I propose to implement a complex solution whose outcomes will be more environmental (water management and landscape management) more than straightforwardly financial. Yes, the whole thing has a chance to earn a living by selling electricity from hydroelectric turbines, but this is like Nicola Tesla earning a living by repairing people’s house equipment.

Is there any theoretical way I can use my toolbox of collective intelligence – tested on incremental technological change – to represent the socio-economic absorption of ‘Energy Ponds’? Good question. It is about social structures reacting to something disturbing. The general intuition I have in that respect, and which I developed through simulations described in my draft paper: ‘Behavioral absorption of Black Swans: simulation with an artificial neural network’  is that social structures tend to smooth out disturbances, for one. New things enter the game easier and faster than old things get pushed out of it, for two. I think that both cases, namely technological change in the European market of electricity and the possible development of ‘Energy Ponds’ are the kind of story, when new technologies sort of pile up on the top of old ones. Increased complexity is created. Increasing complexity means the build-up of some kind of non-equilibrium, which either gest smoothed out, and the corresponding technological change is nicely absorbed, or it doesn’t, and we have the Schumpeterian creative destruction.

I pretty much know how social structures wrap themselves around new power installations. There is one Black Swan, though, swimming surreptitiously around: the nuclear. In Europe, we have a keen interest in passing from combustion engines to electric vehicles. Combustion engines run on gasoline or on diesel, which all boils down to oil, which we don’t have and need to import. Transportation based on electricity makes us much less dependent on imported fuels, and that means more strategic security. Still, I think we will need to come back to developing nuclear power plants if we want to have enough juice for all those batteries on wheels.  

As regards ‘Energy Ponds’, the big question is how will urban and peri-urban structures get along with swamp-like reservoirs of water. That is really a deep question. For centuries, cities in Europe have been developing by drying out and draining down swamps. Swamps and buildings do not really like each other. Do we have the technologies to make their mutual neighbourhood liveable?

Leave a Reply