Parfois j’ai du pot et parfois pas tout à fait

Mon éditorial

Ce dernier temps je me suis engagé très sérieusement dans la conception des milieux expérimentaux pour l’absorption des nouvelles technologies. Ce qui m’intéresse c’est le comportement humain dans le processus d’absorption de l’innovation. Je me suis dit que nous sommes plus nombreux que jamais sur cette planète et lorsqu’il y a plus de monde dans un espace constant, cela veut dire plus d’interactions humain-humain dans l’unité de temps, ce qui à son tour veut dire apprentissage plus rapide et plus d’expérimentation. Je me suis aussi dit qu’en dépit d’avoir appris pas mal des trucs utiles dans l’expérimentation avec les technologies nouvelles, nous sommes toujours plutôt maladroits lorsqu’il est question d’expérimenter avec nos propres structures sociales. La notion-même tend à avoir une très mauvaise presse – les associations d’idées genre « Corée du Nord » ou bien « goulag » viennent presque spontanément à l’esprit – seulement il vaut mieux se rendre compte que nous expérimentons avec nos propres structures sociales de toute façon. Tout changement des politiques publiques – santé, éducation, emploi etc. – que les hommes politiques présentent comme des solutions uniquement bénéfiques pour leurs nations respectives sont, en fait, toutes faites d’expérimentation. Si on ôtait, pour quelques minutes, le masque professionnel d’assurance du visage d’un homme ou une femme politique qui nous présentent un nouveau projet de loi, nous pourrions voir la même incertitude qui accompagnait un inventeur du XIXème siècle qui mettait en marche un prototype nouveau de moteur ou de turbine et priait pour que le truc ne pète pas immédiatement.

Tout apprentissage est donc fait d’une séquence d’expériences, même si nous ne nous en rendons pas compte. Si de toute façon nous expérimentons avec nos structures sociales, autant apprendre à le faire bien, avec un maximum des résultats et un minimum des dégâts. Une bonne expérience scientifique consiste à créer un environnement contrôlé, où nous pouvons provoquer des phénomènes alternatifs et les observer de façon plus précise, plus rapide et moins coûteuse que l’observation des mêmes phénomènes, surtout dans leur occurrence alternative, dans la vie réelle. Une expérience réduit le temps et le coût d’observer les façons alternatives de faire la même chose. Si je veux créer un environnement expérimental pour observer les façons dont les gens absorbent les nouvelles technologies, je peux commencer, par exemple, avec un raisonnement en parallèle, où je mets des variables contrôlées côte à côte avec les variables observées.

J’ai l’impression qu’il est temps de puiser un peu dans la littérature du sujet qui, dans ma discipline de recherche, semble être le plus proche d’expérimentation pure et dure : l’économie béhavioriste. Un peu par tradition, on attribue les débuts de l’économie béhavioriste à Herbert Simon (1955[1]). Comme j’aime bien lire ma littérature dans le sens inverse, de la fin vers le début, je commence ma revue de la théorie d’Herbert Simon par l’annexe à l’article proprement dit. Dans la science, c’est comme dans un contrat : les trucs les plus intéressants sont souvent mis dans l’annexe. Alors, cette annexe décrit un problème pratique : j’ai une maison à vendre et le prix du marché change dans le temps. D’abord, la mise en scène exacte. Chaque jour k, j’établis un prix de départ, acceptable pour moi, que Herbert Simon symbolise avec d(k). Si le jour k je reçois au moins une offre égale ou supérieure à d(k), je vends la maison à ce prix. Si je reçois plusieurs offres égales ou supérieures à d(k), je vends la maison au plus offrant. Si je ne reçois aucune proposition au moins égale à d(k), je retiens la maison jusqu’au prochain jour d’enchères et pour ce jour prochain j’établis un nouveau prix de départ d(k + 1). A chaque moment donné, je connais les prix passés mais les prix futurs restent incertains. Comment puis-je choisir le meilleur moment pour vendre ? Herbert Simon dit que dans une telle situation je peux former une stratégie subjectivement rationnelle, où j’utiliserai ma connaissance d’offres passées pour établir un prix de départ qui va maximiser ma valeur espérée V{d(k)}.

Bon, ça c’est le problème pratique et maintenant je bondis en arrière, vers le début de l’article, et je commence bien gentiment, par le début du discours théorique. Herbert Simon commence par assumer que l’ensemble des stratégies de comportement que je considère comme possibles dans la situation donnée sera, en fait, un sous-ensemble de l’ensemble total des comportements réellement possibles. Herbert Simon approche donc la rationalité limitée dans les choix économiques par le côté étroit, pour ainsi dire : il assume que les choix parfaitement rationnels prennent en considération un éventail des comportements possibles plus large que celui perçu par les agents économiques réels, qui ont une vision systématiquement rétrécie.

A l’époque (les années 1950), une assomption de ce genre était presque une révolution copernicienne par rapport au corset artificiellement étroit imposé par la théorie économique classique, où les choix économiques étaient soit pleinement rationnels soit ils n’étaient pas des choix économiques du tout. Seulement moi, j’ai à l’intérieur de moi ces trois personnages distincts qui m’accompagnent dans mon voyage de découverte : le bouledogue joyeux, le singe curieux et le moine austère. Ce dernier est un peu dangereux, comme il adore manier le rasoir d’Ockham et poser des questions embarrassantes du genre « Comment pouvons-nous être sûrs que la chose X est vraiment la chose X ? Ça pourrait aussi bien être la chose Y, avec juste un peu de ressemblance à X… ».

C’est bien le moine qui commence la bagarre, cette fois. Comment pouvons-nous être sûrs, dans un cas donné, que l’assomption d’Herbert Simon est vraie ? Oui, il est bien vrai que dans la vie quotidienne nous avons une tendance patente à rétrécir, par la peur et l’ignorance, l’étendue de nos possibilités. Seulement une tendance ce n’est pas la même chose qu’une structure de réalité : c’est l’une des structures possibles. Je connais ces situations dans la vie, lorsqu’une compagnie exquise, combinée avec une consommation un peu excessive des spiritueux, me fait faire des plans et des promesses qui s’avèrent terriblement embarrassantes le jour prochain : je prends en considération un éventail plus large des comportements que celui qui m’est réellement accessible ici et maintenant. Dans des cas extrêmes, je peux même aller, mentalement et momentanément, dans un univers parallèle où pas une seule, parmi les stratégies que je considère tout à fait sérieusement (pour le moment), ait une correspondance quelconque avec la réalité. Il y a aussi ces cas mixtes, souvent rencontrés dans les décisions d’affaires, quand certaines de stratégies que je prends en compte sont tout à fait rationnelles pendant que d’autres ne sont pas réalisables du tout.

L’assomption d’Herbert Simon – que dans me choix économiques je prends systématiquement en considération moins d’options qu’il en ait en réalité – est donc un cas spécial. Le cas général, c’est une situation où ces deux ensembles des comportements – l’ensemble A des tous les comportements réellement possibles et l’ensemble Am des comportements que je perçois subjectivement comme possibles – entretiennent des relations tout à fait libres. Am peut être contenu dans A ou bien l’inverse ; Am peut être complétement disjoint du A ou bien ils peuvent avoir une partie commune et des parties disjointes. C’est fou le nombre des trucs qui peuvent arriver lorsqu’on pense sérieusement à tout ce qui peut arriver.

Ces relations mathématiquement libertines entre le concevable et le perçu sembles être la pierre angulaire de l’économie behavioriste. Tout en admettant que les choix économiques que nous faisons sont généralement rationnels, les béhavioristes assument que toute solution économique – optimale ou pas –  est atteinte à travers une séquence de x essais, où x peut se ranger entre 1 et une limite indéfinie a priori, et chaque essai est un test de perception et de compréhension de la part des agents économiques impliqués.

Bon, prouesse théorique bien exposée, il est temps que je revienne à la réalité. Mon moine austère interne me demande : « Bon, tout ce truc des relations variables entre A et Am, qu’est-ce que ça prouve en ce qui concerne cette vente immobilière ? Quand est-ce que je dois vendre ? ». Alors, cette annexe dans l’article d’Herbert Simon aboutit à la conclusion que je peux former une stratégie de vente autant plus proche de la solution idéale que ma connaissance de l’occurrence des prix est étendue. Plus des jours d’enchères j’ai traversés, plus j’ai d’information sur les prix qui sont réellement pratiqués dans le marché. Avec un peu de chance, je peux percevoir un cycle dans ces prix et avec un peu de grâce dans mes mouvements je peux cibler le sommet de la crête. En généralisant, si mon Am se contient dans A, chaque expérience consécutive m’approche d’une perception de plus en plus pleine et de plus en plus fidèle de A. La perfection n’est jamais possible mais je peux apprendre à faire des décisions de mieux en mieux ciblées. C’est donc un cas d’apprentissage béhavioriste positif.

Maintenant, je renverse la relation : je pense que je peux plus que je peux réellement, donc mon ensemble Am est plus spacieux que l’ensemble A et le contient. Chaque essai que je fais peut se terminer par un succès – l’action entreprise s’avère réalisable – ou bien par un échec, quand l’action que j’ai prise se contient dans cet excédent de mon Am à l’extérieur d’A, dans ce domaine des tapis volants, épées dotées des superpouvoirs ainsi que des taux de retour sur investissement aux alentours de 200% par semaine. Là, mon apprentissage peut se passer de trois façons différentes. La première est la plus simple et la plus facile, puisqu’elle imite le cas précèdent : chaque fois que je prends une décision, j’ai suffisamment de pot pour que mon comportement choisi dans l’ensemble Am atterrisse dans l’ensemble A. En Pologne, nous appelons ça « plus de chance que de cervelle ». Remarquez : il suffit que ça marche juste une fois ou deux et j’ai des fortes chances d’acquérir un peu plus de cervelle, qui va remplacer la chance le cas échéant, et je peux me trouver dans la situation bénie de mon Am contenu dans A, donc dans l’univers théorique d’Herbert Simon. C’est pas mal, comme univers : ça avait valu un prix Nobel d’économie.

En revanche, si je n’ai pas assez de chance pour que son surplus remplace le manque de discernement de ma part, mes premiers choix sont ratés : je choisis, une fois ou deux (bon, pas plus de cinq, quand même) des tels comportements dans mon Am qui se trouvent en dehors du A, donc qui sont tout simplement irréalistes. Je commence mon apprentissage par une série d’échecs. L’absence de succès me décourage et j’arrête complètement d’expérimenter avec le choix économique donné. C’est le cas d’apprentissage béhavioriste négatif.

Il y a enfin un troisième chemin d’apprentissage, lorsque au moins certaines de mes options dans l’ensemble Am sont suffisamment erronées pour se trouver à l’extérieur d’A, mais certaines autres sont acceptablement raisonnables, et au tout début de mon parcours parfois j’ai du pot et parfois pas tout à fait. Je combine des succès et des échecs. C’est un chemin d’apprentissage que je peux appeler « Bayésien », puisqu’il reflète l’expérience décrite par Thomas Bayes en 1763 : mes succès et mes échecs me fournissent des informations que je peux utiliser pour définir de plus en plus exactement ce fragment de mon Am qui est identique avec un fragment d’A (options faisables), par opposition au fragment d’Am complétement disjoint d’A (options fantasques). La logique d’apprentissage Bayésien, quand on étudie à fond la pensée de Thomas Bayes, est des plus intrigantes : des séquences différentes des succès et d’échecs peuvent conduire à des savoirs (et des savoirs-faire) complètement disjoints l’un de l’autre.

Bon, je résume. Si chacune de mes décisions est une découverte des possibilités déjà offertes par mon environnement, donc si j’apprends suivant le paradigme d’Herbert Simon, je développe, d’une façon plus ou moins linéaire, un corps de savoir formé par cet environnement.  En revanche, si ma cervelle me permet d’inventer des schémas de comportement complètement irréalistes, tout en me bénissant des passages de réalisme, donc si j’apprends de façon Bayésienne, j’ai des chances presque égales de développer des corps de savoir complètement différents dans le même environnement.

Je retourne maintenant à cette histoire d’environnement expérimental pour des technologies de la ville intelligente. Supposons que je crée un groupe d’utilisateurs qui testent des prototypes et/ou fournissent des informations précieuses à travers leur comportement-même. Si je ne leur permets pas d’avoir ces échecs, donc si je leur donne suffisamment d’information pour qu’ils n’inventent rien de vraiment raté, je les mets automatiquement sur le chemin d’apprentissage béhavioriste positif. Ils vont tous apprendre plus ou moins la même chose et la variable que je peux tester dans un tel environnement expérimental c’est essentiellement leur vitesse d’apprentissage. En revanche, si mon environnement expérimental donne la possibilité de faire quelque chose de vraiment bête et dysfonctionnel, je mets mes utilisateurs-cobayes sur le chemin d’apprentissage Bayésien et ils peuvent développer toute une multitude des savoirs différents.

La même logique accompagne la distinction entre un algorithme classique et l’intelligence artificielle. Si vous avez déjà travaillé avec un compilateur de programmation typique, par exemple celui de Python, il accepte uniquement des trucs qui marchent. Le savoir-faire que vous pouvez développer avec un tel outil est une copie du savoir-faire des créateurs du langage de programmation donné. Si, par contre, vous êtes en interaction avec un outil d’intelligence artificielle, il va accepter vos solutions ratées, donc vos échecs, comme une information de valeur et créer des solutions différentes suivant des séquences différentes des succès et d’échecs de votre part.

Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Voici le lien hypertexte de mon compte sur Patreon . Si vous vous sentez prêt à cofinancer mon projet, vous pouvez vous enregistrer comme mon patron. Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ?

[1] Simon A.,H., A Behavioral Model of Rational Choice, The Quarterly Journal of Economics, Vol. 69, No. 1 (Feb., 1955), pp. 99-118

Le rectangle Bayésien et mon business plan

Mon éditorial, droit de la ville d’Amplepuis cette fois

Je peux résumer ces quelques derniers jours d’écriture. Je suis en train d’étudier la théorie de probabilité, appliquée à un cas réel : mon idée de développer des systèmes énergétiques locaux basés sur les énergies renouvelables et dotées d’un système monétaire local. Comme je conduisais ce fil de raisonnement, j’ai remarqué que je commencé à faire le prof. Je profitais, dans chaque mise à jour, de l’occasion offerte par le sujet pour exposer, de façon didactique, des questions fondamentales du calcul des probabilités. Au fond, ceci n’est pas une mauvaise chose. J’ai bien l’ambition de tourner mon blog scientifique, un jour, en un site éducatif. Autant pratiquer un peu.

Alors, je résume partiellement ma recherche théorique et, en même temps, je résume l’aspect éducatif. Un cas réel, comme celui-ci, donc un business plan pour un projet innovant, nous fait comprendre quelques implications pratiques du calcul des probabilités. Premièrement, une probabilité est une proportion entre des fragments de réalité et c’est précisément ça l’utilité de base du calcul des probabilités. Nous avons une tendance innée à essayer de prédire ce qui va se passer, mais nous disposons de moyens très limités pour faire une telle prédiction de façon intelligible, donc communicable aux autres. Les évènements s’accompagnent mutuellement, ils forment des séquences et des structures. L’assomption du système aristotélicien et déterministe était que nous vivons tous et toujours dans la même structure. C’est aussi une tentation instinctive de notre cerveau de créer l’illusion de reproduction continue d’un même schéma.    Néanmoins, la science moderne nous dit que notre existence est un passage constant entre des différentes structures de réalité. Essayer de prédire l’avenir veut dire deviner dans quelle structure on va atterrir. En plus, nous avons une capacité vraiment limitée de faire la différence entre la réalité d’une part et notre image de la réalité d’autre part. Ce que nous pouvons faire – et que nous faisons tout le temps, en fait, à un niveau neurologique très primaire – consiste à créer beaucoup de représentations alternatives de réalité et à essayer voir laquelle de parmi elles marche le mieux, donc laquelle nous donne le plus d’exactitude de prédiction.

Si je vivais cents ans en arrière, et si ce business plan concernait un nouveau moulin à vent, ce plan serait déterministe. Il ne serait même pas question de business plan, en fait, puisque tout serait réglé par des assomptions du type « il en a toujours été ainsi ». Pourquoi donc aujourd’hui nous faisons des business plans ? Eh bien, parce que nous sommes déjà habitués, au niveau culturel, à l’approche probabiliste : « Donc, mon cher enthousiaste, dans quel univers places-tu ton projet, comment définis-tu ton succès et comment peux-tu m’assurer qu’il y a un chemin rationnellement prévisible vers ledit succès ? ». C’est le moment de tirer le probas de notre manche. Question no. 1 : l’univers. Je sais, l’univers, c’est plutôt grand et plutôt infini. En fonction de la théorie de probabilité qu’on choisit, cet univers peut être plus ou moins infini. Je commence avec l’univers qui est apparemment le plus infini, donc avec l’univers de de Moivre et Laplace. Je cherche ces moyennes solides, à plier de l’acier autour d’elles : je cherche des infos sur les variables que j’ai choisies comme conditions de succès : la taille du marché de l’énergie ou Q(E), les prix d’énergie P(E), le pouvoir d’achat individuel PP(E) en ce qui concerne ladite énergie, le taux de retour sur actifs ROA, l’offre agrégée de l’argent M, ainsi que la taille du marché W des transactions effectuées en des monnaies virtuelles. Dans un business plan, vous pouvez fréquemment trouver ces données-là comme « Etude primaire de marché » ou un truc similaire.

Voilà, maintenant que j’ai épinglé ces moyennes sur ma table, je peux créer un univers un peu moins infini, celui de Thomas Bayes. En fait, je le suis déjà dit hier qu’en vertu de clarté il serait utile que je dessine le rectangle Bayésien, celui qui a servi Thomas Bayes à construire la preuve de ses propositions. Donc, vous cliquez ici, sur le rectangle Bayésien et vous pouvez le voir, aussi fidèle au dessin originel que j’ai pu le faire. Le truc, ici, c’est de construire un univers abordable, fini, avec des limites. Qu’est-ce qui peut bien se passer ? Tout, en fait, mais dans ce tout il y a des choses qui ne sont liées à mon projet que d’une façon très distante. J’utilise ces moyennes du type de Moivre – Laplace que j’ai déjà trouvées. Provisoirement, je construis cinq rectangles Bayésiens, un pour chaque variable dans mon objectif quantifiable ( M et W se trouvent dans un seul rectangle, puisque mon objectif quantifiable dans leur cas c’est W/M). Leurs distributions respectives feront la longueur du côté AB dans chaque rectangle ou, en langage humain, elles représentent ce qui peut raisonnablement se passer.

Là, une petite remarque semble utile. Dans ce rectangle Bayésien, vous pouvez remarquer une ligne centrale Ii, genre de sécante à travers cet univers. C’est celle qui touche à cette espèce de bosse sous le rectangle proprement dit. La bosse en rouge, c’est une ligne que Thomas Bayes a dessinée sous le rectangle et la seule ligne courbe dans tout son dessin originel. Eh bien, quoi qu’il ne le dit pas directement dans son article (Bayes, Price 1763[1]), je devine que cette ligne courbe c’est la distribution de De Moivre – Laplace ou, si vous voulez une référence plus proche dans le temps, une distribution Gaussienne. Le point « i » sur cette courbe semble être la moyenne, ou la valeur espérée de la distribution. De là, je déduis que l’intention de Thomas Bayes était de placer son raisonnement dans un univers congruent avec celui de De Moivre – Laplace, mais plus étroit et plus défini.

Alors, la première balle de Thomas Bayes est jetée, celle qu’il eût désignée comme « W » est qui est censée positionner l’univers de probabilité même plus exactement par rapport à l’immensité de tout ce qui peut se passer. Sa position d’atterrissage fixe la position du point « o » sur le côté AB du rectangle et la position de la ligne Sow. En regardant la position de ce point « o » et de la ligne Sow qu’il fixe je me dis – et c’est encore une fois une supposition de ma part – que Thomas Bayes avait en tête une situation où cet évènement initial d’atterrissage de la première balle découpe un fragment vraiment très circonscrit par rapport à l’univers initial.

Bon, donc dans mon business plan, je jette cette première balle. Dans chacun de ces cinq rectangles Bayésiens initiaux que j’avais tracé précédemment autour de mes six moyennes – la taille du marché de l’énergie Q(E), les prix d’énergie P(E), le pouvoir d’achat individuel PP(E) en ce qui concerne l’énergie, le taux de retour sur actifs ROA, l’offre agrégée de l’argent M, et la taille du marché W des transactions effectuées en des monnaies virtuelles – ce premier jet de balle découpe une section où je veux bien me trouver avec mon projet, une sorte de zone favorable.

Maintenant, le temps vient de jeter la seconde balle « O », celle qui est mon essai proprement dit. Pour les besoins d’un business plan, il faut bien la calibrer, cette seconde balle. Intuitivement, dans mon cas précis de systèmes énergétiques locaux, je choisis des balles de calibre différent pour des rectangles différents. Quand j’étudie mes chances de succès dans le marché local, donc quand je parle de la consommation locale d’énergie ainsi que des prix et du pouvoir d’achat, je prends un consommateur comme une balle. Ma balle « W » était donc un consommateur représentatif pour un succès de ma part ; donc un consommateur qui peut bien se permettre de payer pour toute l’énergie verte dont il a besoin pour couvrir toute sa demande individuelle. Ma ligne Sow dans le rectangle c’est la frontière entre le marché composé de consommateurs aux caractéristiques favorables à mon projet, d’une part, et tout le reste du marché d’autre part. Ma balle « O » c’est un essai de ma part d’atterrir, avec mon marketing local, dans le segment de consommateurs qui ont au moins ce profil-là ou même mieux, comme des enthousiastes avec portefeuille épais et un sens d’engagement prononcé. Mon nombre total d’essais est le nombre total de consommateurs que je peux raisonnablement espérer de toucher avec mon effort marketing.

Là, je peux montrer la différence entre la logique Bayésienne et celle de la distribution Poisson, utilisée par Satoshi Nakamoto dans ses simulations initiales pour le Bitcoin. Dans la distribution Poisson le nombre total d’essais est toujours défini comme un intervalle de temps. Si j’appréhendais mon business plan du côté Poisson, ma question serait « Quelle est la probabilité que j’attire le nombre de consommateurs voulu dans un intervalle de temps N ? ». Dans la logique Bayésienne je peux me concentrer sur cet aspect temporel ou utiliser une autre échelle (autre que le temps, je veux dire) pour mesurer mon nombre d’essais.

Disons que pour la clarté, je choisis une échelle temporelle. Je veux calculer la probabilité Bayésienne du scénario suivant : sur les 365 jours de l’année, je veux 265 jours avec succès marketing et je peux tolérer 100 jours avec échec. La probabilité de succès pour un seul jour est de 50%, donc 0,5. Ma probabilité Bayésienne se calcule comme E*ap*bq = (265100/100 !)*0,5265*0,5100 = 3,01048*e-26. N’essayez même pas de l’écrire normalement. La probabilité d’un tel scénario est tellement minime, dans la logique Bayésienne, que je peux m’en passer dans mon business plan.

Maintenant, la logique de Siméon Denis Poisson et sa formule P = e-l*(lk/k !), où « e » est la constante e = 2,71828…, « l » est le nombre moyen espéré d’évènements par intervalle de temps, et « k » est le nombre de succès par intervalle de temps. Comme la probabilité d’un seul succès est de 50%, le nombre moyen espéré est de l = 0,5*365 = 182,5. Ma probabilité de Poisson, de 265 jours à succès en une année est donc de P = e-182,5*(182,5265/265 !) et alors c’est là que ça pète, puisque le résultat est de – 179,28. Ceci n’est pas une probabilité.

Bon, mon cerveau commence à démanger. Ce sera tout pour aujourd’hui.

[1] Mr. Bayes, and Mr Price. “An essay towards solving a problem in the doctrine of chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfrs.” Philosophical Transactions (1683-1775) (1763): 370-418

Thomas Bayes, Satoshi Nakamoto et bigos

Mon éditorial

J’hésite entre continuer à explorer la logique mathématique de Thomas Bayes (Bayes, Price 1763[1]), et celle de Satoshi Nakamoto, le fondateur mystérieux de Bitcoin.. Je me dis qu’il serait intéressant d’être bien polonais, cette fois. Chez nous, en Pologne, nous avons un plat appelé « bigos » : un peu comme la choucroute française, mais avec plus de prédilection pour mélanger des ingrédients divers, dans une base faite de choux cuit. Du choux cuit, ça a une odeur si forte que quoi que vous y ajoutiez servira à mitiger et affiner. Mes choux c’est l’idée de systèmes énergétiques locaux basés sur les énergies renouvelables (choux) et la théorie de probabilité c’est l’eau pour le cuire. Je pense qu’il est intéressant de mélanger, dans cette base, Thomas Bayes et Satoshi Nakamoto façon « bigos ».

Avec Thomas Bayes j’entre donc un univers essentiellement spatial et géométrique, où tout ce qui peut possiblement se passer et défini comme un rectangle ABCD et où deux balles jetées l’une après l’autre simulent les évènements dont l’occurrence m’intéresse le plus. Alors que la première balle, que Thomas Bayes appelle « W », soit jetée sur le rectangle, elle s’arrête en un point défini. On trace une ligne droite, parallèle à AD, à travers ce point. Elle coupe les côtés CD et AB en des points dénommés respectivement « s » et « o ». Voilà que mon univers se rétrécit à un rectangle plut petit, compris entre le côté AD du grand rectangle et la droite s_o. Comme je jette ma deuxième balle, dénommée « O » dans la notation originelle de Bayes, je la jette plusieurs fois, ou « n ». Si la balle O tombe dedans ce petit rectangle, entre le côté AD et la droite s_o, c’est un succès que Thomas Bayes dénomme M. Le nombre de fois que j’achève ce succès M est symbolisé avec « p », et le nombre d’échecs (pas de M, désolé) porte le symbole de q.

Avec Satoshi Nakamoto, je plonge dans un univers de transactions financières effectuées façon Blockchain, donc comme endossage consécutif garanti par une chaîne des registres dans un réseau. Selon la définition initiale de la part de Satoshi Nakamoto : « Nous considérons le scenario d’un agresseur qui essaie de générer une chaîne alternative (de transactions) plus vite que se constitue la chaîne honnête. Même si ceci est accompli, ça n’ouvre pas le système aux changements arbitraires, comme la création de valeur à partir du néant ou prendre l’argent qui n’a jamais appartenu à l’agresseur. Les nœuds du réseau ne vont pas accepter une transaction non-valide comme paiement, et les nœuds honnêtes n’accepteront jamais un registre qui les contient. Un agresseur peut seulement essayer de changer une de ses propres transactions pour reprendre l’argent qu’il a récemment dépensé ».   

L’intentionnalité est la première différence notable entre ces deux univers de probabilité : celui de Thomas Bayes et celui de Satoshi Nakamoto. La logique Bayésienne considère les évènements étudiés comme le résultat du pur hasard ou d’un processus si complexe et inconnu que de notre point de vue c’est du hasard. La logique de Bitcoin c’est un univers d’actions intentionnelles où on parle de succès ou échec dans l’accomplissement d’un objectif. Voilà du « bigos » intéressant. La deuxième différence, plus abstraite et peut-être plus subtile, est la façon de définir le succès de l’action. Chez Thomas Bayes, le succès consiste à se trouver, lorsque tout a été fait et dit, dans une gamme d’états possibles, genre entre la frontière de mon univers et une droite qui le coupe en deux. Chez Nakamoto, l’agresseur peut parler du succès si et seulement s’il accomplit un objectif très concret, c’est-à-dire s’il réussit à annuler ses propres paiements et faire revenir le pognon dans sa poche.

Si j’utilise ces deux cadres de référence pour aborder, de façon scientifique, mon idée de systèmes énergétiques locaux, avec mes quatre conditions Q(E) = D(E) = S(RE) ; P(E) ≤ PP(E) ; ROA ≥ ROA*, W/M(T1) > W/M(T0), la logique Bayésienne me dit que les valeurs de référence dans mon business plan seront plus ou moins exogènes à mes efforts : elles seront comme la position de cette première balle W. La demande d’énergie D(E), le pouvoir d’achat individuel PP(E) par rapport à cette énergie, la valeur de référence ROA* pour mon taux de retour sur actifs, ainsi que la proportion initiale W/M(T0) entre les transactions W, payées avec le Wasun, la monnaie virtuelle locale, et celles effectuées en monnaie officielle M : tout ça sera donné objectivement, plus ou moins. Alors que j’ai ces repères, je peux soit continuer dans la logique Bayésienne – et étudier la probabilité de tout un éventail des situations qui remplissent mes conditions générales – soit suivre la logique de Satoshi Nakamoto et essayer de décrire des succès et des échecs possibles en des termes très, très précis.

La logique de Thomas Bayes semble reposer, dans une large mesure, sur la lemme 1, qu’il formule juste après avoir tracé cet univers rectangulaire ABCD avec deux balles jetées dedans : « La probabilité que le point o tombera entre une paire quelconque des points sur le côté AB (du rectangle ABCD) est la proportion de la distance entre ces deux points à la longueur totale de AB ». Pour ceux qui sont juste modérément fanas des maths : une lemme est une sorte de théorème adjacent, comme instrumental au théorème principal. Une lemme est donc une hypothèse prouvée, genre en passant, dans le cadre d’une preuve plus large. Thomas Bayes offre une preuve géométrique très élaborée de cette lemme, encore que moi, personnellement, je pense qu’il est plus intéressant de démontrer le sens de cette proposition dans la vie réelle, plutôt que suivre un chemin géométrique rigoureux. Alors voilà : vous tournez le dos à un arbre et vous jetez des pierres par-dessus votre épaule, sans regarder. Vous avez une sorte d’univers derrière vous, qui est fait de toutes les endroits possibles où vos pierres peuvent atterrir. Dans cet univers, il y a comme un sous-univers fait de l’arbre. Chaque fois qu’une pierre touche l’arbre, l’évènement compte comme succès. Sinon, c’est un échec. Le bon sens dit que plus gros est cet arbre derrière vous, par rapport à votre champ de tir complet, plus grandes sont les chances que vos pierres frappent l’arbre. La logique opérationnelle derrière cette lemme est tout aussi terre-à-terre : plus larges sont les limites de ce que je définis comme succès, par rapport à la taille entière de mon univers de probabilité, plus grandes sont mes chances d’achever ce succès. Si une fille cherche un gars de haute taille comme candidat pour fiançailles, la probabilité d’en trouver un entre 175 centimètres et 2 mètres dix est plus grande que de trouver un futur père de ses enfants qui aie exactement 189 centimètres.

La logique Bayésienne implique donc que je définisse mon succès comme un éventail de situations possibles. En revanche, Satoshi Nakamoto suit une logique de séquence temporelle. Une situation a deux résultats possibles : soit l’agresseur réussit à rempocher son argent de façon frauduleuse, soit il échoue. La probabilité de Nakamoto est basée sur le nombre de pas nécessaires pour achever le résultat. Plus de nœuds dans le réseau l’agresseur devra dominer, par rapport au nombre total des nœuds, plus il lui sera difficile d’atteindre son but. Plus de nœuds honnêtes nous avons dans le réseau, en proportions à la taille totale du réseau, plus il est facile d’en garder l’intégrité financière. Nakamoto parle de séquence puisque le fait d’atteindre chaque nœud et essayer de le dominer est un pas séparé dans la séquence d’actions entreprises par l’agresseur. Remarquez : c’est la même logique de base que chez Bayes, la logique des proportions, mais représentée comme une chaîne d’évènements plutôt que comme un univers plat et statique.

En revenant à mes oignons, je peux appréhender mon concept général de ces deux façons distinctes. Je peux définir mon objectif de la façon que j’ai déjà montré – Q(E) = D(E) = S(RE) ; P(E) ≤ PP(E) ; ROA ≥ ROA*, W/M(T1) > W/M(T0) – ou bien je peux représenter ces conditions comme des séquences d’actions et les décrire en termes du nombre de pas nécessaires. Combien de clients dois-je acquérir pour pouvoir achever Q(E) = D(E) = S(RE) ? Combien de nœuds ai-je besoin de créer dans mon réseau de Wasun pour achever W/M(T1) > W/M(T0) ? Je peux aussi muter cette logique (Nakamotienne ?) un tout petit peu et remplacer la dimension temps par une dimension ressources : combien de capital je dois investir pour atteindre mes objectifs etc. ?

[1] Mr. Bayes, and Mr Price. “An essay towards solving a problem in the doctrine of chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfrs.” Philosophical Transactions (1683-1775) (1763): 370-418

Quelque chose de rationnellement prévisible

Mon éditorial

Ça y est, je me suis relancé. Mardi et mercredi, je finissais cet article sur les modèles évolutionnistes appliqués aux changements technologiques. Vous pouvez le voir et télécharger ici.  Faute de temps, je n’avais rien mis sur ce blog. Hier, j’ai déjà amorcé une nouvelle course, dans ma mise à jour en anglais (voir : “Conversations between the dead and the living (no candles)” ) et je veux bien continuer. D’abord, une petite récapitulation : je reste dans le monde du changement technologique et je joue avec les probabilités. Je suis retourné à cette idée, vieille de quelques mois, des systèmes énergétiques locaux basés sur les énergies renouvelables et associés avec le développement des monnaies locales, que jadis j’avais baptisé le Wasun. Vous pouvez consulter, par exemple,  ‘Les moulins de Wasun’  pour vous rafraîchir la mémoire. De toute façon, j’ai décidé d’approcher cette idée, cette fois, sous l’angle de la théorie de probabilité d’évènements rares. Je continue donc avec les notions fondamentales de Thomas Bayes (Bayes, Price 1763[1]), ainsi qu’avec la théorie de Siméon Denis Poisson, surtout dans sa forme utilisée par le soi-disant fondateur de l’idée de Bitcoin, Satoshi Nakamoto.

Je procède par ordre d’ancienneté et je commence par la théorie de Bayes dans sa pure forme. Il faut que je définisse un évènement, complexe et à contours un peu flous, si possible, qui correspond au succès dans cet univers. Je le définis avec quatre conditions. Condition no. 1 est que le marché d’énergie Q(E) dans une communauté locale consiste à 100% d’énergie renouvelable produite localement. Il faut donc que la demande locale d’énergie, ou D(E), soit égale à l’offre locale S(RE) d’énergie renouvelable. Mathématiquement, cela veut dire Q(E) = D(E) = S(RE). Condition no. 2 stipule que le prix d’énergie P(E) dans ce marché soit dans la limite du pouvoir d’achat moyen PP(E), donc que P(E) ≤ PP(E). Condition no. 3 se réfère au côté capitaliste du projet et elle exige que le taux de retour sur actifs ROA (bénéfice net divisé par la valeur comptable d’actifs) soit supérieur ou égal à une valeur de référence ROA*, ou ROA ≥ ROA*. Finalement, je veux que l’offre W de la monnaie virtuelle locale accroisse systématiquement sa part du marché local par rapport à l’offre M de la monnaie ‘officielle’. Avec deux périodes consécutives T0 et T1, ma condition no. 4 peut donc être exprimée comme W/M(T1) > W/M(T0).

J’ai donc quatre conditions qui doivent être remplies pour que je puisse parler d’un succès dans le lancement d’un projet local d’énergie renouvelable. J’utilise cet exemple pour jouer un peu avec la théorie de probabilité et à ce moment précis, je veux un petit échange posthume d’idées avec Thomas Bayes. Pour comprendre la théorie de Bayes, il est bon de se demander nous-mêmes qu’est-ce que la probabilité dans notre vie quotidienne. La probabilité que nous apprenons à l’école est un nombre. On jette une pièce de monnaie 100 fois, et on calcule le nombre d’occurrence de la pile et de la face. Disons que pile à fait 30 apparitions dans cet échantillon de 100. Alors, on calcule la probabilité que ce soit pile qui est sur le dessus de la pièce après le jet comme P = 30/100 = 0,3. C’est fait. Seulement, on a justement accompli un paradoxe. Si un évènement est probable, il est incertain. Si j’ai un nombre bien défini, comme P = 0,3, je n’ai plus d’incertitude. La probabilité que nous venons de calculer est dure comme fer. Pardon, elle semble dure comme fer. C’est une fausse certitude en ce qui concerne l’avenir. Quand on y regarde bien, ce P = 0,3 c’est du passé, pendant que la question de base en ce qui concerne la probabilité est « Qu’est-ce qui va se passer ? ». Quelle garantie ai-je, sur la base ce ces 100 essais, que dans les 10 prochains essais j’aurais 3 piles et 7 faces ?

A partir de là, c’est la vraie théorie de probabilité qui commence. Il y a deux chemins fondamentaux à prendre : celui de de Moivre – Laplace ou bien celui de Thomas Bayes. Le premier est le mieux connu aujourd’hui comme « la loi des moyennes ». Je peux répéter mes expériences, par exemple en faisant 100 séries de 100 coups de pile, 10 000 au total. Dans chaque centaine, je calcule mes probabilités. Les probabilités collectées de 100 séries vont converger vers une moyenne. En fait, lorsque la variation, de centaine en centaine, autour de cette moyenne, se stabilisera, je saurai alors que cette moyenne est LA Probabilité des probabilités. Ce théorème, que la moyenne d’un ensemble d’observations est la valeur espérée future pour d’autres observations est le fondement de la statistique moderne et je peux dire sans trop d’exagération que sans ce théorème, on en serait toujours à la science façon Saint Thomas d’Aquin, donc on serait déterministe.

Thomas Bayes a adopté une autre approche. Il avait ce pressentiment général que dans les décisions de la vie réelle, le plus souvent, on n’a pas 10 000 essais pour établir une moyenne avec confidence : on opère dans un univers très limité en termes du nombre d’essais. De plus, les évènements de la vie réelle sont complexes : ce sont plutôt des séquences hétérogènes d’évènements dont certains peuvent être qualifiés comme satisfaisants dans leurs résultats, pendant que les autres se placent en dehors de notre intervalle de tolérance. Son idée, à Thomas Bayes, était de formuler des scénarios alternatifs à propos de l’avenir, et essayer voir quelles conditions doivent être remplies pour que chacun de ces scenarios ait lieu. L’assomption théorique qu’il eût fait était l’idée d’un intervalle de probabilités : « Il y a une probabilité de 40% que mon avenir soit entre le scénario A et le scénario B ».

Lorsque je construis un business plan, comme pour cette idée de systèmes énergétiques locaux, c’est définitivement la logique Bayésienne qui prend le devant. Je fais face à un avenir incertain. J’ai de la science à utiliser, donc j’ai tout un tas de probabilités « dures », style de Moivre – Laplace, mais ces probabilités ne vont pas remplacer mon plan : elles peuvent me servir à le rendre plus solide, mais c’est moi qui dois tracer des scénarios alternatifs pour l’avenir et qui doit pondérer judicieusement entre l’ambition et le bon sens. Je réassume donc mes quatre conditions : Q(E) = D(E) = S(RE) ; P(E) ≤ PP(E) ; ROA ≥ ROA*, W/M(T1) > W/M(T0).

Maintenant, laissons parler Thomas Bayes. Si je veux p succès sur n essais, et donc je peux tolérer q = n – p échecs, et si je sais que la probabilité d’un seul succès est égale à « a » et donc que la probabilité d’un échec est de « b », Thomas Bayes me dit que la probabilité complexe de p succès et q échecs est égale à E*ap*bq, où E est le facteur de l’expression ap*bq obtenu après l’expansion de (a + b)p+q. C’est la proposition 7 de son essai. Alors, pour comprendre bien comment ça marche, il faut oublier la plupart de ce qu’on a appris à l’école. Bon, OK, oublier juste pour un instant. Faire abstraction de, plutôt. Si la probabilité de succès est de a et la probabilité d’échec est de b, et s’il n y a pas d’évènements non-qualifiables, comme devenir le premier ministre au lieu de devenir président, mon a + b doit faire 1 au total. Si j’élève 1 à quelle puissance que ce soit, ça fera toujours 1. Donc, l’expression (a + b)p+q = 1,00 ce qui n’est pas tout à fait la direction que je veux prendre. Il faut donc bien comprendre que le succès est quelque chose de complètement différent d’un échec et que « a » correspond à un état de choses radicalement opposé à celui symbolisé par « b ». Par conséquent, et c’est là que nous devons être vraiment souples, pendant qu’il est vrai qu’en général a = 1 – b, il vaut mieux oublier que « a + b = 1 ».

Ce (a + b)p+q c’est un binôme de Newton et on l’expand comme tel. Par conséquent, le facteur E de l’expression E*ap*bq est égal à « pq/q! » , où « q! » est la factorielle de q, donc 1*2*…*q.  Si je veux quatre succès et je peux tolérer six échecs sur un total de 10 essais, le terme E sera égal à E = 46/6! = 5,688888889 et cela me dit que j’ai entre 5 et 6 façons différentes de combiner 4 succès et 6 échecs sur un total de 10 essais, quoi que c’est plutôt 6 que 5.

Mon objectif quantifiable est Q(E) = D(E) = S(RE) ; P(E) ≤ PP(E) ; ROA ≥ ROA*, W/M(T1) > W/M(T0). Maintenant, si je veux utiliser quelle forme de probabilité que ce soit – Laplacienne ou Bayésienne – il faut que je précise combien de ces succès je veux avoir. La réponse que je vais donner à cette question va déterminer le genre de probabilisme que je vais entrer. Si je réponds « Je veux juste un succès. Je veux que ça marche dans un cas, le mien », j’ai un succès et zéro échecs. Essayons voir. J’ai une probabilité Bayésienne de E*11*00 d’avoir un succès certain et certainement pas d’échec. Mon E fait 10/0! = 1/1 = 1, et donc ma probabilité Bayésienne est égale à 1. J’ai 100% de succès. Idiot ? Peut-être, mais c’est justement là que nous voyons l’originalité de Bayes. Tu veux établir tes chances de succès de façon réaliste, mec ? Alors, imagine un univers, un ensemble d’évènements, donc soit une séquence, soit une concurrence spatiale et ça, c’est du rationnellement quantifiable. Je peux, par exemple, imaginer une projection dans le temps : « Durant les 10 années à venir je veux 4 années avec toutes les quatre conditions remplies ».

Si je veux donc prendre le chemin Bayésien dans ma recherche, il faut que j’imagine des alternatives réalistes en ce qui concerne mes conditions. Ensuite, je pourrais me servir d’une étude de marché pour calculer les probabilités simples de base, les Laplaciennes : la probabilité que Q(E) = D(E) = S(RE) et ainsi de suite. Alors, je pourrais évaluer les probabilités complexes, Bayésiennes que tout aille comme je le veux (quatre conditions remplies à la fois) et dire si mes espérances sont ne serait-ce qu’un peu réalistes. Si oui, je bâtis mon business plan avec l’objectif quantifiable comme précisé là-dessus. Sinon, je teste la probabilité complexe d’autres scénarios possibles jusqu’à que j’arrive à quelque chose de rationnellement prévisible.

[1] Mr. Bayes, and Mr Price. “An essay towards solving a problem in the doctrine of chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfrs.” Philosophical Transactions (1683-1775) (1763): 370-418

Deux ans après la mort

Un petit éditorial de ma part

Je crois qu’hier, dans ma mise à jour en anglais ( “Lazy Sunday, watching the clouds” ), j’ai enfin cerné les hypothèses que je voudrais développer et prouver dans mon article sur l’application des modèles évolutionnistes à l’étude des changements technologiques. Les hypothèses, ce n’est pas facile à formuler, au moins si j’ai l’intention de les vérifier. Alors, je peux formuler trois hypothèses, que je trouve à la fois possibles à vérifier et liées à ce truc d’évolutionnisme. Hypothèse no. 1 : L’innovation contribue à réduire le déficit alimentaire. Hypothèse no. 2 : Le nombre des demandes de brevet est significativement déterminé par la quantité de facteurs de production – capital et travail – couramment engagés. Hypothèse no. 3 : des sociétés distinctes se caractérisent par une proportion distincte entre le nombre des demandes de brevet et la quantité des facteurs de production – capital et travail – couramment engagés.

En comparaison de mes réflexions passées, ces hypothèses peuvent sembler bien sèches, même simplistes. Eh bien, c’est le rasoir d’Ockham au boulot. J’ai revu les faits empiriques que je peux citer comme preuve de ce que j’avance, j’ai essayé de formuler une signification commune de ces faits et voilà ce que j’ai obtenu. Vous pouvez vous demander qu’est-ce que j’ai fait de toute cette réflexion évolutionniste. Alors, tout ce chemin de raisonnement était justement un chemin de raisonnement, une expression plus ou moins intelligible de mes intuitions. Dans le langage strict de Milton Friedman, que j’apprécie beaucoup par ailleurs, ce sont des hypothèses spéculatives. J’ai comme une petite intuition que le changement technologique observable dans l’économie mondiale est un processus évolutionniste. Si je décide de publier cette idée, à la fois les critiques et les enthousiastes de cette idée viendront tôt ou tard à ce moment du haussement des épaules : « Ouais, c’est chouette. Génial, même. Alors, qu’est-ce que ça prouve, exactement ? Si, par exemple, nous sommes au Kenya, quelle serait la différence dans leur politique d’investissement en technologies nouvelles, du point de vue de votre modèle ?». C’est précisément dans un désir de devancer une telle question que je me suis concentré sur les hypothèses énumérées ci-dessus. L’avantage réside dans l’ampleur du champ d’applications possibles. Si je présente une preuve convaincante de ces hypothèses, et si j’équipe ma preuve empirique avec une version élégante du raisonnement que vous avez pu suivre sur mon blog durant ces dernières semaines, je démontrerai que le raisonnement évolutionniste est apte à générer un outil de prédiction, qui peut aider à comprendre comment l’innovation peut aider à sortir de la pauvreté.

Comme je suis cette piste de distinction entre la spéculation intellectuelle et les preuves empiriques, je suis retourné à un classique : le révérend Thomas Bayes et son essai posthume sur le calcul de probabilité (Bayes, Price 1763[1]). Voilà une histoire intéressante, lourde en conséquences. En Décembre 1763, monsieur Richard Price adresse une lettre à John Canton qui était alors, selon toute vraisemblance, le rédacteur en chef ou le rédacteur adjoint d’une revue prestigieuse intitulée « Philosophical Transactions of the Royal Society ». Dans cette lettre, Richard Price communique qu’en classant les notes de son ami Thomas Bayes, après la mort de celui-ci, il eut trouvé un essai extrêmement intéressant. Richard Price en lui-même était un personnage extrêmement intéressant (lisez plus, par exemple, ici : https://www.york.ac.uk/depts/maths/histstat/price.pdf ) et il était aussi intéressant de constater qu’il a soumis cet essai de Thomas Bayes à la Royal Society deux ans après la mort de son ami. Qu’était-il de si important dans cette œuvre ? Essayons de reconstruire le chemin de raisonnement qui a donné naissance à ce qu’on appelle aujourd’hui la statistique Bayésienne.

Je procède donc de ma manière préférée et je saute jusqu’à la fin dudit essai. Voilà ce qu’écrit Thomas Bayes dans la conclusion : « Ce qui recommande le plus la solution contenue dans cet essai est qu’elle est complète dans ces cas où l’information est la plus voulue et où la solution de Mr de Moivre du problème inverse peut donner peu ou pas de direction du tout ; je veux dire dans tous les cas où p ainsi que q n’ont pas de magnitude considérable. Dans d’autres cas, lorsque p ainsi que q sont très considérables, il n’est pas difficile de percevoir la véracité de ce qui a été démontré, donc qu’il y a des raisons de croire en général que les chances de l’occurrence d’un évènement sont aux chances de sa défaillance dans le même ratio que celui de p au q. Néanmoins nous serons grandement dupes si nous jugeons de cette manière lorsque p ou q sont petits. Et ainsi dans de tels cas les Données ne sont pas suffisantes pour découvrir la probabilité exacte d’un évènement, quoi qu’il est plausiblement possible de découvrir les limites entre lesquelles il est raisonnable de penser qu’il se trouve, ainsi qu’il est possible de déterminer le degré d’assentiment dû à toute conclusion ou assertion relative à ces limites ».

 Voilà donc que le révérend Thomas Bayes expose sa manière d’explorer les évènements à occurrence peu fréquente. Voulait-il établir une preuve éclairée de l’existence de du Dieu ? Possible. Voyons donc comment il s’y prend. Je passe directement au contenu de l’essai lui-même et je n’entre pas, pour le moment, dans les détails de la préface écrite par Richard Price dans sa lettre. Juste une remarque en passant. A l’école, on a été habitués à voir p et q comme des probabilités. Ici, dans la notation originale de Thomas Bayes, ce sont des nombres d’essais, pas des probas. Nous parlons donc des cas, ou le nombre d’essais est tellement faible qu’il est dur de calculer les probabilités classiques, comme P/N.

Thomas Bayes pose un problème simple : « Etant donné le nombre des fois quand un évènement inconnu s’est passé ou a failli de se passer ; ayant comme requis que la probabilité de son occurrence dans un essai unique se trouve quelque part parmi deux degrés de probabilité qui peuvent être nommés ». Ce qui intrigue tout de suite dans ce problème est la notion d’évènement inconnu. Normalement, dans le calcul de probabilité, un pas prérequis est de définir exactement les évènements observés. Ici, Bayes pose l’hypothèse d’un évènement que nous ne pouvons pas définir. Après, ça commence mollo : presque toute la Section I sonne exactement comme le contenu standard des manuels de maths aujourd’hui. Ça commence à être vraiment intéressant avec Proposition no. 2 dans cette section : « Si une personne a une espérance qui dépend sur l’occurrence d’un évènement, la probabilité de l’évènement est à la probabilité de sa défaillance comme sa perte en cas de défaillance à son gain en cas de l’occurrence ». Voilà que Thomas Bayes annonce sa couleur pour la première fois : dans la vie réelle, nous n’avons pas l’occasion, d’habitude, de calculer les probabilités de succès ou de perte. Nous avons des informations générales et catégoriques du genre : « si votre ceinture de sécurité n’est pas bouclée, la chance que vous soyez atteint par une météorite est X ». On veut savoir comment utiliser ces règles générales dans la vie de tous les jours et Thomas Bayes conseille : établissez des scénarios du genre « si X alors Y » et puis calculez les probabilités conditionnelles.

Exemple : je choisis entre plusieurs investissements alternatifs en des technologies distinctes. Je sais que je n’aurai pas l’occasion de tester chaque technologie l’une après l’autre et que personne ne peut me garantir le succès avec un choix donné. Néanmoins je veux pondérer mes risques. Thomas Bayes dit : d’abord, définissez ce qu’est un succès pour vous dans cette situation. Pour chaque technologie alternative, faites une estimation raisonnable de remplir ces critères de succès. Après ce pas initial, vous aurez donc une probabilité de succès égale à « a » et une probabilité d’échec égale à « b ». Remarquez : échec ne veut pas nécessairement dire faillite complète. Là, j’ai un peu de flexibilité, suivant mes critères de succès. Maintenant, je construis in portefeuille de sept compagnies. Je suis préparé à en sacrifier deux sur l’autel de mon expérience en affaires, mais cinq d’entre eux doivent marcher, suivant ma définition préalable de ce que « marcher » veut dire pour moi. Je veux donc savoir quelle est la probabilité cumulative que 5 investissements sur 7 soient un succès et que 2 sur 7 soient des échecs.

Thomas Bayes postule que ma probabilité cumulative sera égale à E*ap*bq = E*a5*b2. Cela veut dire, dans le raisonnement original de Bayes, que mes 5 succès et 2 échecs peuvent survenir d’E façons différentes et mutuellement incohérentes. Il est utile de se souvenir, à ce point-ci, que les probabilités sont, par définition, des fractions plus petites que 1. Plus grande est l’exposante à laquelle j’élève une telle fraction, plus petite sera la puissance obtenue. Donc, même si mes chances de succès soient égales à celles de l’échec, donc si a = b = 0,5, 0,5 puissance 5 sera plus petit que 0,5 puissance 2. Plus je veux de succès sur un nombre total d’essais, plus petite sera la probabilité de les obtenir, et c’est alors que le facteur E prend de l’importance.  Plus de combinaisons différentes ai-je d’avoir 5 succès et 2 échecs sur un total de 7 investissements, plus grandes sont mes chances d’atteindre mes objectifs.

La théorie que Thomas Bayes exposa dans son essai est vraiment complexe. Là, je ne viens que survoler ses hypothèses initiales. La leçon à tirer est très proche de ce que je suis en train de développer dans mes modèles évolutionnistes : la flexibilité et le choix ont une importance primordiale pour l’issue finale d’un ensemble complexe d’actions entreprises par une société humaine. Nous pouvons dire que les probabilités simples, comme « a » et « b » dans l’exemple de Bayes, sont données par la Nature : elles sont largement exogènes. Largement, mais pas complètement. Beaucoup dépend de la façon de définir mon succès et mon échec. En revanche, le nombre requis de succès, le nombre tolérable d’échecs, ainsi que le nombre de façons possibles de les combiner sont principalement des décisions de ma part. Dans cet aspect particulier, la théorie de Bayes montre que la possibilité de multiplier les formes différentes de faire la même chose accroît mes chances de succès d’une façon capitale. C’est alors que le raisonnement évolutionniste revient en scène : l’évolution c’est une série d’expériences avec une série de mutations. Plus on invente de mutations pour une fonction donnée, plus on a de chances de survivre.

J’ai fait tout ce détour par l’essai fameux de Bayes pour montrer que l’approche évolutionniste n’est pas la même chose que le Darwinisme originel. L’évolutionnisme est une façon d’appréhender tout processus de changement qui implique une série de choix complexes.

[1] Mr. Bayes, and Mr Price. “An essay towards solving a problem in the doctrine of chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfrs.” Philosophical Transactions (1683-1775) (1763): 370-418