Stratégies financières

Je continue un peu dans la foulée d’analyse des rapports courants des sociétés de ma liste « technologies nouvelles en énergie ». Je fais de mon mieux pour développer sur les premières observations que j’ai déjà présentées dans « Mes lampes rouges » ainsi que dans « Different paths ». Comme je résume partiellement ce que j’ai lu, ma première conclusion est une confirmation de mes intuitions initiales. Ce que nous appelons l’industrie de l’hydrogène est en fait une combinaison des technologies de pointe (piles à combustible à la base d’hydrogène, par exemple) avec des technologies bien établies – quoi que sujettes à l’innovation incrémentale – comme l’électrolyse ou le stockage des gaz volatiles. Il semble y avoir d’importants effets d’échelle, probablement en raison de la complexité technologique. Les sociétés relativement plus grandes, comme Plug Power ou Fuel Cell Energy, capables d’acquérir d’autres sociétés et leurs technologies, semblent être mieux placées dans la course technologique que des indépendants qui développent des technologies propriétaires de façon indépendante. C’est un truc que j’ai déjà remarqué dans le photovoltaïque et dans l’industrie de véhicules électriques : oui, il y a des petits indépendants prometteurs mais la bonne vieille intégration industrielle, surtout en verticale, semble revenir comme stratégie de choix après de décennies de bannissement. 

J’ai remarqué aussi que la catégorie générique « technologies d’hydrogène » semble attirer du capital de façon un peu inconsidérée. Je veux dire qu’il semble suffisant de dire « Eh, les gars, on invente dans l’hydrogène » pour que les investisseurs se précipitent, peu importe si le modèle d’entreprise est viable et transparent, ou pas-tout-à-fait-vous-comprenez-c’est-confidentiel. Je vois dans l’industrie d’hydrogène le même phénomène que j’observais, il y a encore 4 ou 5 ans, dans le photovoltaïque ou bien chez Tesla : lorsqu’une technologie nouvelle commence à prendre son envol en termes de ventes, les organisations qui s’y greffent et développent sont un peu démesurées ainsi qu’exagérément dépensières et il faut du temps pour qu’elles se fassent vraiment rationnelles.    

Pour gagner un peu de distance vis-à-vis le business d’hydrogène, je commence à piocher dans les rapports courants d’autres sociétés sur ma liste. Tesla vient en tête. Pas sorcier, ça. C’est la plus grosse position dans mon portefeuille boursier. Je lis donc le rapport courant du 4 août 2022 qui rend compte de 13 propositions soumises à l’assemblée générale d’actionnaires de Tesla le même 4 août, ainsi que de l’opération de fractionnement d’actions prévue pour la seconde moitié d’août. Ce dernier truc, ça m’intéresse peut-être le plus. La version officielle qui, bien entendu, sera mise à l’épreuve par le marché boursier, est que le Conseil D’Administration souhaite rendre les actions de Tesla plus accessibles aux investisseurs et employés et procédera donc, le 17 août 2022, à un fractionnement d’actions en proportion trois-pour-une en forme d’une dividende-actions. Chaque actionnaire enregistré ce 17 août 2022 verra le nombre de ses actions multiplié par trois. Les nouvelles actions fractionnées entreront en circulation boursière normale le 24 août 2022.

Il est vrai que les actions de Tesla sont plutôt chères en ce moment : presque $900 la pièce et ceci après la forte dépréciation dans la première moitié de l’année. Formellement, le fractionnement en proportion trois-pour-une devrait diviser cette cotation par trois, seulement le marché, ça suit les règles d’économie, pas d’arithmétique pure. Je pense que par la fin de 2022 on aura trois fois plus d’actions de Tesla flottantes et cotées à plus qu’un troisième du prix d’aujourd’hui encore qu’entre temps, il y aura des turbulences, je vous le dis. J’attache donc ma ceinture de sécurité – en l’occurrence c’est une position en Apple Inc., bien plus stable et respectable que Tesla – et j’attends de voir la valse boursière autour de ces actions fractionnées.

A part cette histoire de fractionnement, les autres 12 propositions couvrent 4 qui ont été acceptées – dont une relative au fractionnement déjà signalé – ainsi que 8 propositions non-acceptées. Les 4 acceptées sont relatives à, respectivement :

>> la nomination de deux personnes au Conseil D’Administration

>> l’accès par procuration, proposition sans engagement présentée par actionnaires en minorité

>> la ratification du choix de PricewaterhouseCoopers LLP comme auditeur financier de Tesla pour l’année comptable 2022

>> l’accroissement du nombre d’actions ordinaires de Tesla par 4 000 000

Les 8 propositions rejetées se groupent en deux catégories distinctes d’une façon intéressante. Il y en a donc deux qui viennent des cadres gestionnaires de Tesla et qui postulaient de modifier l’acte d’incorporation de Tesla de façon à éliminer la règle de majorité qualifiée de 66 et 2/3% dans les votes, ainsi qu’à réduire à 2 ans le mandat des directeurs du Conseil d’Administration. Ces deux propositions-là ont perdu car elles n’avaient pas… de majorité qualifiée de 66 et 2/3%. Les 6 propositions restantes parmi les non-acceptées étaient toutes des propositions sans engagement de la part d’actionnaires minoritaires et toutes les 6 demandaient des rapports additionnels ou bien des changements afférents à, respectivement : la qualité de l’eau, travail forcé d’enfants, le lobbying, la liberté d’association, arbitrage dans les affaires d’emploi, la diversité au sein du Conseil d’Administration, les politiques internes contre le harassement et la discrimination.

Dans le vocabulaire politique de mon pays, la Pologne, nous avons l’expression « compter les sabres ». Elle désigne des votes qui sont perdus d’avance mais qui servent à compter la taille de la coalition possible que le proposant donné pourrait rallier pour quelque chose de plus sérieux. Je bien l’impression que quelqu’un chez Tesla commence à compter les sabres.

Je passe au rapport courant de Tesla du 20 juillet 2022 qui, en fait, annonce leur rapport financier du 2ème trimestre 2022. Ça a l’air bien. Le bénéfice net pour la première moitié de 2022 a triplé par rapport à la même période de 2021, le flux de trésorerie se fait plus robuste. Rien à dire.                

Je tourne vers un modèle d’entreprise beaucoup plus fluide, donc celui de Nuscale Power ( https://ir.nuscalepower.com/overview/default.aspx ). Lorsqu’on lit la présentation générale de ce business (https://ir.nuscalepower.com/overview/default.aspx ), tout colle à merveille : NuScale Power fournit des petits réacteurs nucléaires innovatifs, où un module peut fournir 77 mégawatts de puissance. Seulement, lorsque je commence à lire leur rapport annuel 2021, ça se corse, parce que le rapport est publié par l’entité nommée Spring Valley Acquisition Corporation, qui se présente comme une société coquille incorporée dans les îles Cayman, sous la forme légale de société exonérée. Le management déclarait, dans le rapport annuel 2021, que le but de Spring Valley Acquisition Corporation est de conduire une fusion ou bien une acquisition, un échange d’actions ou bien leur achat, une acquisition d’actifs, une réorganisation ou bien une autre forme de regroupement d’entreprises. Au mois de mars 2021 ; Spring Valley Acquisition Corporation est entrée en un accord tripartite, accompagné d’un plan de fusion, avec sa filiale en propriété exclusive, Spring Valley Merger Sub, Inc., incorporée dans l’état de Delaware, ainsi qu’avec Dream Holdings Inc., une autre société incorporée dans le Delaware, celle-ci sous la forme de société d’utilité publique. C’est une nouveauté dans la loi des sociétés dans le Delaware, introduite en 2013. Un article intéressant à ce sujet est accessible sur « Harward Law School Forum on Corporate Governance ».

Ainsi donc, en mars 2021, Spring Valley Acquisition Corporation, Spring Valley Merger Sub, Inc. et Dream Holdings Inc. avaient convenu de conduire un regroupement d’entreprises avec AeroFarms. Dream Holdings fusionne avec Spring Valley Merger Sub. En octobre 2021, l’accord en question a été résilié. En décembre 2021, Spring Valley Acquisition Corporation entre en un nouvel accord tripartite, encore une fois avec la participation de Spring Valley Merger Sub. Cette fois, Spring Valley Merger Sub est introduite comme une LLC (société à responsabilité limitée) incorporée dans l’état d’Oregon. La troisième partie de l’accord est NuScale Power LLC, aussi incorporée en Oregon. Poursuivant cet accord, Spring Valley Acquisition Corporation change de lieu d’incorporation des îles Cayman pour l’état de Delaware, pendant que Spring Valley Merger Sub LLC fusionne avec et en NuScale Power LLC. Après la fusion, Spring Valley change de nom et devient NuScale Power Corporation.

Comment a marché la combine ? Eh bien, voici une annonce courante de NuScale Power, datant d’hier (10 août), où NuScale donne un aperçu de leurs résultats pour le 2nd trimestre 2022. La perte d’exploitation pour cette première moitié de l’année 2022 était de 44,75 millions de dollars, un peu moins que dans la première moitié de 2021. Leurs actifs ont presque triplé en 12 mois, de $121,2 millions à $407,3 millions. Côté exploitation, une nouvelle entité opérationnelle est créé sous le nom de « VOYGR™ Services and Delivery (VSD) » avec la mission d’organiser les services, les fournitures et la gestion clients pour la technologie VOYGR™. Cette dernière est la technologie pour bâtir et exploiter des centrales nucléaires à puissance moyenne sur la base de « NuScale Power Module™ », soit avec 4 modules dedans et une puissance de 924 mégawatts de puissance électrique (VOYGR-4) soit avec 6 modules (VOYGR-6).

Cette comparaison rapide d’évènements relativement récents chez Tesla et NuScale Power me conduit à la conclusion que si je veux comprendre à fond un modèle d’entreprise, il faut que je m’intéresse plus (que je l’avais fait jusqu’à présent) à ce qui se passe dans les passifs du bilan. Je vois que des différentes phases d’avancement dans le développement d’une technologie s’accompagnent des stratégies financières très différentes et le succès technologique dépend largement du succès de ces mêmes stratégies.

Mes lampes rouges

Me revoilà, je me suis remis à blogguer après plusieurs mois de pause. Il fallait que je prenne soin de ma santé et entretemps, je repensais mes priorités existentielles et cette réflexion pouvait très bien avoir quelque chose à faire avec les opioïdes que je prenais à l’hôpital après mon opération.

Redémarrer après un temps aussi long est un peu dur et enrichissant en même temps. C’est comme si j’enlevais de la rouille d’une vieille machine. J’adore des vieilles machines que je peux dérouiller et réparer. J’ai besoin de quelques vers d’écriture pour m’orienter. Lorsque j’écris, c’est comme si je libérais une forme d’énergie : il faut que j’y donne une direction et une forme. Je suis en train de travailler sur deux trucs principaux. L’un est mon concept d’Energy Ponds : une solution complexe qui combine l’utilisation des béliers hydrauliques pour accumuler et retenir l’eau dans des structures marécageuses ainsi que pour générer de l’électricité dans des turbines hydroélectriques. L’autre truc c’est ma recherche sur les modèles d’entreprise dans le secteur amplement défini comme nouvelles sources d’énergie. Là, je m’intéresse aux entreprises dans lesquelles je peux investir via la Bourse, donc les véhicules électriques (comme investisseur, je suis in fidèle de Tesla), les systèmes de stockage d’énergie, la production d’hydrogène et son utilisation dans des piles à combustible, le photovoltaïque, l’éolien et enfin le nucléaire.

Intuitivement, je concentre mon écriture sur le blog sur ce deuxième sujet, donc les modèles d’entreprise. Raison ? Je pense que c’est à cause de la complexité et le caractère un peu vaseux du sujet. Le concept d’Energy Ponds, quant à lui, ça se structure peu à peu comme j’essaie – et parfois je réussis – à y attirer l’intérêt des gens aux compétences complémentaires aux miennes. En revanche, les modèles d’entreprise, c’est vaseux en tant que tel, je veux dire au niveau théorique, ça me touche à plusieurs niveaux parce que c’est non seulement de la science pour moi mais aussi une stratégie d’investissement en Bourse. Par ailleurs, je sais que lorsque je blogue, ça marche le mieux avec de tels sujets, précisément : importants et vaseux en même temps.

Voici donc une liste de sociétés que j’observe plus ou moins régulièrement :

>> Tesla https://ir.tesla.com/#quarterly-disclosure

>> Rivian https://rivian.com/investors

>> Lucid Group https://ir.lucidmotors.com/

>> Nuscale Power https://ir.nuscalepower.com/overview/default.aspx 

>> First Solar https://investor.firstsolar.com/home/default.aspx

>> SolarEdge https://investors.solaredge.com/

>> Fuel Cell Energy https://investor.fce.com/Investors/default.aspx

>> Plug Power https://www.ir.plugpower.com/overview/default.aspx

>> Green Hydrogen Systems https://investor.greenhydrogen.dk/

>> Nel Hydrogen https://nelhydrogen.com/investor-relations/

>> Next Hydrogen (précédemment BioHEP Technologies Ltd.) https://nexthydrogen.com/investor-relations/why-invest/

>> Energa https://ir.energa.pl/en

>> PGE https://www.gkpge.pl/en

>> Tauron https://raport.tauron.pl/en/tauron-in-2020/stock-exchange/investor-relations/

>> ZPUE  https://zpue.com/    

La première différentiation sur cette liste c’est ma propre position comme investisseur. Je tiens des positions ouvertes sur Tesla, Nuscale Power, Energa, PGE, Tauron et ZPUE. J’en ai eu dans le passé sur Lucid Group, First Solar et SolarEdge. En revanche, Rivian, Fuel Cell Energy, Plug Power, Green Hydrogen Systems, Nel Hydrogen ainsi que Next Hydrogen – ceux-là, je regarde et j’observe sans y toucher.

La deuxième différentiation est relative aux flux opérationnels de trésorerie : il y en a des profitables (Tesla, First Solar, SolarEdge, Energa, PGE, Tauron et ZPUE) et des pas-tout-à-fait-et-ça-va-venir-mais-pas-encore profitables (Rivian, Lucid Group, Nuscale Power, Fuel Cell Energy, Plug Power, Green Hydrogen Systems, Nel Hydrogen, Next Hydrogen).   

Comme je viens de faire ces deux classifications, il me vient à l’esprit que j’évalue les modèles d’entreprise selon le critère de revenu propriétaire tel que défini par Warren Buffett. A ce propos, vous pouvez consulter soit le site relations investisseurs de son fonds d’investissement Berkshire Hathaway (https://www.berkshirehathaway.com/ ) soit un très bon livre de Robert G.Hagstrom « The Warren Buffett Way » (John Wiley & Sons, 2013, ISBN 1118793994, 9781118793992). Les entreprises qui dégagent un surplus positif de bénéfice net et amortissement sur les dépenses capitalisées en actifs productifs sont celles qui sont déjà mûres et stables, donc financièrement capables de lancer quelque chose comme une nouvelle vague de changement technologique. En revanche, celles où cette valeur résiduelle « bénéfice net plus amortissement moins dépenses capitalisées en actifs productifs » est négative ou proche de zéro sont celles qui ont toujours besoin de venir à termes avec la façon dont ils conduisent leur business et sont donc incapables de lancer un nouveau cycle de changement technologique sans assistance financière externe.

Je me concentre sur les sociétés spécialisées dans l’hydrogène :  Fuel Cell Energy, Plug Power, Green Hydrogen Systems, Nel Hydrogen, Next Hydrogen. Les technologies de production et d’utilisation d’hydrogène semblent être le matériel pour la prochaine vague de changement technologique en ce qui concerne l’énergie. Encore, il y a hydrogène et hydrogène. Le business de production d’hydrogène et de sa fourniture à travers des stations de ravitaillement c’est la technologie d’électrolyse et de stockage des gaz volatiles, donc quelque chose de pas vraiment révolutionnaire. Il y a espace pour innovation, certes, mais c’est de l’innovation incrémentale, rien qui brise les murs de l’ignorance pour ainsi dire. En revanche, l’utilisation d’hydrogène dans les piles à combustible, ça, c’est une technologie de pointe.

Dans ces deux cas de développement de technologie des piles à combustible (donc piles à hydrogène), soit Fuel Cell Energy et Plug Power, je passe en revue leur bilans et je les compare avec les autres trois sociétés, orientées plus spécifiquement sur l’électrolyse et le ravitaillement en hydrogène. Je m’arrête à leurs passifs. Quatre trucs m’intéressent plus particulièrement : est-ce qu’ils ont un capital social positif, la proportion « dette – capital social », la structure dudit capital social et les pertes accumulées dans le bilan.

Comme ces 5 sociétés n’ont pas toutes publié leurs rapports du 2nd trimestre 2022, je compare leurs rapports annuels 2021.    

>> Fuel Cell Energy https://investor.fce.com/Investors/default.aspx :  capital social de $642,4 millions, fait 79% des passifs du bilan ; la source principale du capital social est la prime d’émission de $1,9 milliards, ce qui permet de compenser un déficit accumulé de $1,266 milliards.

>> Plug Power https://www.ir.plugpower.com/overview/default.aspx : capital social de $4,6 milliards, soit à peu de choses près 78% des passifs et alimenté par une prime d’émission de $7,07 milliards qui compense un déficit accumulé de $2,4 milliards.

>> Green Hydrogen Systems https://investor.greenhydrogen.dk/ ; avec ceux-là, je commence à convertir les monnaies ; Green Hydrogen Systems est une société danoise et ils rapportent en couronnes danoises, soit 1 DKK = 0,14 USD ; le capital social ici est de $164,06 millions, fait 90% des passifs, vient surtout d’une prime d’émission de $243,71 millions et contient un déficit accumulé de $96,87 millions.   

>> Nel Hydrogen https://nelhydrogen.com/investor-relations/ ; cette fois, c’est la Norvège et les couronnes norvégiennes à 1 NOK = 0,1 USD ; le capital social monte à $503,87 millions ce qui donne 84% des passifs et se base sur une prime d’émission de $559,62 millions et compense avec surplus un déficit accumulé de $97,16 millions.

>> Next Hydrogen (précédemment BioHEP Technologies Ltd.) https://nexthydrogen.com/investor-relations/why-invest/ ;  cette fois, ce sont les dollars canadiens – à 1 CAD = 0,77 USD – et les dollars canadiens propriétaires de Next Hydrogen font un capital social de $29,1 millions qui, à son tour, fait 78,6% des passifs et – surprise – vient surtout du capital-actions pur et simple de $58,82 millions et contient un déficit accumulé de $32,24 millions.

Je commence à voir un schéma commun. Toutes les 5 sociétés ont un modèle d’entreprise très propriétaire, basé sur le capital social beaucoup plus que sur la dette. Cela veut dire Peu de levier financier et beaucoup de souveraineté stratégique. Dans les quatre cas sur cinq, donc avec l’exception de Next Hydrogen, cette structure propriétaire est basée sur une combine avec les prix d’émission des actions. On émet les actions à un prix d’appel follement élevé par rapport au prix comptable basé sur les actifs. Seuls les initiés savent pourquoi c’est tellement cher et ils payent, pendant que le commun des mortels est découragé par cette prime d’émission gigantesque. Tout en entrant en Bourse, les fondateurs de la société restent maîtres du bilan et donnent à leurs participations une liquidité élégante, propre au marché financier public.

Dans le cinquième cas, donc avec Next Hydrogen, c’est plus transparent et moins tordu : c’est le capital-actions qui pompe le capital social et ça semble donc plus ouvert aux actionnaires autres que les fondateurs.

Dans tous les cas, le capital social sert à compenser un déficit accumulé de taille très importante et en même temps sert à créer un coussin de liquide sur le côté actif du bilan. Les actifs autres que l’argent liquide et ses équivalents sont donc largement financés avec de la dette.

Prendre contrôle propriétaire d’une entreprise profondément déficitaire indique une détermination stratégique. La question se pose donc, c’est une détermination à faire quoi au juste ? Je rétrécis mon champ d’analyse à Fuel Cell Energy et je commence à passer en revue leurs rapports courants. Le Rapport courant du 12 Juillet 2022 informe que Fuel Cell Energy est entrée en contrat de vente sur marché ouvert (anglais : « Open Market Sales Agreement ») avec Jefferies LLC, B. Riley Securities, Inc., Barclays Capital Inc., BMO Capital Markets Corp., BofA Securities, Inc., Canaccord Genuity LLC, Citigroup Global Markets Inc., J.P. Morgan Securities LLC and Loop Capital Markets LLC dont chacun est designé comme Agent et tous ensemble sont des « Agents ». Le contrat donne à Fuel Cell Energy la possibilité d’offrir et de vendre, de temps en temps, un paquet de 95 000 000 actions (contre les 837 500 000 actions déjà actives) à valeur nominale de $0,0001 par action (soit la même valeur nominale que les actions déjà en place). Ces offres occasionnelles de 95 000 000 actions peuvent se faire aussi bien à travers les Agents qu’aux Agents eux-mêmes. Cette dualité « à travers ou bien à » se traduit en une procédure de préemption, ou Fuel Cell Energy offre les actions à chaque Agent et celui-ci a le choix de d’accepter et donc d’acheter les actions, ou bien de décliner l’offre d’achat et d’agir comme intermédiaire dans leur vente aux tierces personnes. Fuel Cell Energy paiera à l’Agent une commission de 2% sur la valeur brute de chaque transaction, que ce soit l’achat direct par l’Agent ou bien son intermédiaire dans la transaction. Par le même contrat, Jefferies LLC et Barclays Capital Inc. ont convenu avec Fuel Cell Energy de mettre fin à un contrat similaire, signé entre les trois parties en juin 2021.

Intéressant. Fuel Cell Energy entreprend d’utiliser son capital social comme plateforme de coopération avec une sorte de club d’institutions financières. Ces paquets de 95 000 000 actions à valeur nominale de $0,0001 par action font nominalement $9500 chacun, soit à peu près les dépenses voyage demi-mensuelles d’un PDG dans les organisations signataires du contrat. Pas vraiment de quoi déstabiliser un business. La commission de 2% sur un tel paquet fait $190. Seulement, l’émission publique de 837 000 000 actions existantes de Fuel Cell Energy s’était soldée par une prime d’émission de 5 157 930%. Oui, une prime d’émission de plus de 5 millions de pourcent. Ça fait beaucoup de points de pourcentage. Le moment quand j’écris ces mots, le prix boursier d’une action de Fuel Cell Energy est de $4,15 (soit 4149900% de plus que la valeur comptable). Par ailleurs, le volume d’actions en circulation est de 19 722 305, qui fait un free float d’à peine 19 722 305 / 837 500 000 = 2,35%. Chacun de ces paquets de 95 000 000 actions convenus par le contrat en question fait plus que ça et il peut donner occasion à une prime d’émission de plus de $394 millions et une commission de presque $8 millions.

Je n’aime pas ça. Comme investisseur, j’ai toutes me lampes rouges qui clignotent lorsque je pense à investir dans Fuel Cell Energy. Ce contrat du 12 juillet 2022, c’est carrément du poker financier. Je sais par expérience que le poker, c’est divertissant, mais ça ne va pas de pair avec une stratégie d’investissement rationnelle. Il me vient à l’esprit ce principe de gestion qui dit que lorsque les gestionnaires d’une société ont trop de liquide inutilisé à leur disposition, ils commencent à faire des trucs vraiment bêtes.

Cœur de réflexion

Je me concentre sur un aspect particulier de la révision finale de mon article pour « International Journal of Energy Sector Management » – sous le titre « Climbing the right hill – an evolutionary approach to the European market of electricity » – notamment sur le rapport entre ma méthodologie et celle de MuSIASEM, soit « Multi-scale Integrated Analysis of Societal and Ecosystem Metabolism ».

Je me réfère plus particulièrement à trois articles que je juge représentatifs pour ce créneau de recherche :

>> Al-Tamimi and Al-Ghamdi (2020), ‘Multiscale integrated analysis of societal and ecosystem metabolism of Qatar’ Energy Reports, 6, 521-527, https://doi.org/10.1016/j.egyr.2019.09.019 

>> Andreoni, V. (2020). The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis. Energy Policy, 139, 111304. https://doi.org/10.1016/j.enpol.2020.111304

>> Velasco-Fernández, R., Pérez-Sánchez, L., Chen, L., & Giampietro, M. (2020), A becoming China and the assisted maturity of the EU: Assessing the factors determining their energy metabolic patterns. Energy Strategy Reviews, 32, 100562.  https://doi.org/10.1016/j.esr.2020.100562

De parmi ces trois, je choisis subjectivement le travail de prof. Andreoni (2020[1]) comme le plus solide en termes de théorie. L’idée de base de MuSIASEM est d’étudier l’efficience énergétique des sociétés humaines comme un métabolisme, donc comme un système complexe qui se soutient et se développe à travers la transformation d’énergie et de ressources matérielles.  

J’essaie de comprendre et présenter la logique de base de MuSIASEM en explorant les avantages que professeur Andreoni attribue à cette méthode. Je me permets de traduire fidèlement un passage de l’article (2020[2]) : « […] l’approche MuSIASEM présente des avantages par rapport aux autres méthodologies utilisées pour étudier le métabolisme des sociétés, telles que ‘emergy’, empreinte écologique et l’analyse entrée-sortie […]. En fournissant des descriptions intégrées à travers des niveaux d’analyse différents, l’approche MuSIASEM ne réduit pas l’information en un index quantitatif unique et analyse l’énergie utilisée par rapport aux structures socio-économiques concrètes. Qui plus est, l’inclusion de dimensions multiples (telles que le PIB, temps humain et consommation d’énergie) en combinaison avec des échelles différentes d’analyse (telles que le niveau sectoriel et le niveau national) rend possible de fournir l’information pertinente aux processus à l’intérieur du système ainsi que d’analyser la façon dont les variables externes (telles que la crise économique et la pénurie des ressources) peuvent affecter l’allocation et l’utilisation des ressources ».      

Je me dis que si quelqu’un se vante d’avoir des avantages par rapport à quoi que ce soit d’autre, ces avantages reflètent les aspects les plus importants des phénomènes en question, selon le même quelqu’un. Ainsi donc, prof. Andreoni assume que MuSIASEM permet d’étudier quelque chose d’important – l’efficience énergétique des sociétés comme un métabolisme – toute en ayant l’avantage de déconstruction des variables agrégées en des variables composantes ainsi que celui de multi-dimensionnalité d’analyse. 

Les variables étudiées semblent donc être la base de la méthode. Parlons donc des variables. Professeur Andreoni présente dans son article trois variables essentielles :

>> L’activité humaine totale, calculée comme le produit de : [la population] x [24 heures] x [365 jours]

>> Transformation totale d’énergie, calculée comme la somme de : [consommation finale d’énergie] + [Consommation interne d’énergie dans le secteur d’énergie] + [Pertes d’énergie dans sa transformation]

>> Produit Intérieur Brut  

Ces trois variables fondamentales sont étudiées à trois niveaux différents d’agrégation. Le niveau de base est celui d’économie(s) nationale(s), à partir d’où on décompose, tout d’abord, entre les secteurs macroéconomiques de : ménages par opposition à celui d’activité payée (entreprises plus secteur public). Ensuite, ces secteurs macroéconomiques sont tous les deux désagrégés en l’agriculture, l’industrie et les services.

A chaque niveau d’agrégation, les trois variables fondamentales sont mises en relation entre elles pour calculer deux coefficients : intensité énergétique et métabolisme d’énergie. Celui d’intensité énergétique est calculé comme quantité d’énergie utilisée pour produire un euro de Produit Intérieur Brut et c’est donc l’inverse de l’efficience énergétique (cette dernière est calculée comme quantité de PIB produite à partir d’une unité d’énergie). Le coefficient métabolique, en revanche, est calculé comme la quantité d’énergie par heure d’activité humaine.

J’ai quelques remarques critiques par rapport à ces variables, mais avant de développer là-dessus je contraste rapidement avec ma méthode. Les variables de professeur Andreoni sont des transformations des variables utilisées dans des bases de données publiquement accessibles. Professeur Andreoni prend donc une méthode générale d’observation empirique – donc par exemple la méthode de calculer la consommation finale d’énergie – et transforme cette méthode générale de façon à obtenir une vue différente de la même réalité empirique. Cette transformation tend à agréger des variables « communes ». Moi, de mon côté, j’utilise un éventail large des variables communément formalisées et présentées dans des bases de données publiquement accessibles plus un petit zest des coefficients que je calcule moi-même. En fait, dans la recherche sur l’énergie, j’utilise juste deux coefficients originaux, soit le nombre moyen de demandes de brevet nationales par 1 million d’habitants, d’une part, et la quantité moyenne de capital fixe d’entreprise par une demande nationale de brevet. Quant au reste, j’utilise des variables communes. Dans cet article que je suis en train de finir pour « International Journal of Energy Sector Management » j’utilise les quarante et quelques variables de Penn Tables 9.1. (Feenstra et al. 2015[3]) plus des variables de la Banque Mondiale au sujet d’énergie (consommation finale, participation des sources renouvelables, participation d’électricité) plus des données Eurostat sur les prix d’électricité, plus ces deux coefficients relatifs aux demandes nationales de brevets.

La différence entre ma méthode et celle de MuSIASEM est donc visible déjà au niveau phénoménologique. Moi, je prends la phénoménologie généralement acceptée – donc par exemple la phénoménologie de consommation d’énergie ou celle d’activité économique – et ensuite j’étudie le rapport entre les variables correspondantes pour en extraire un tableau plus complexe. Je sais déjà que dans ma méthode, la quantité et la diversité des variables est un facteur clé. Mes résultats deviennent vraiment robustes – donc cohérents à travers des échantillons empiriques différents – lorsque j’utilise une panoplie riche de variables. Chez MuSIASEM, en revanche, ils commencent par construire leur propre phénoménologie au tout début en ensuite ils raisonnent avec.

Il semble y avoir un terrain commun entre ma méthode et celle de MuSIASEM : on semble être d’accord que les variables macroéconomiques telles qu’elles sont accessibles publiquement donnent l’image imparfaite d’une réalité autrement plus complexe. A partir de là, toutefois, il y différence. Moi, j’assume que si je prends beaucoup d’observations imparfaites distinctes – donc beaucoup de variables différentes, chacune un peu à côté de la réalité – je peux reconstruire quelque chose à propos de ladite réalité en transformant ces observations imparfaites avec un réseau neuronal. J’assume donc que je ne sais pas d’avance de quelle manière exacte ces variables sont imparfaites et je m’en fiche par ailleurs. C’est comme si reconstruisais un crime (j’adore les romans policiers) à partir d’un grand nombre des dépositions faites par des témoins qui, au moment et en présence du crime en question étaient soit ivres, soit drogués soit ils regardaient un match de foot sur leur portable. J’assume qu’aussi peu fiables soient tous ces témoins, je peux interposer et recombiner leurs dépositions de façon à cerner le mécréant qui a tué la vieille dame. J’expérimente avec des combinaisons différentes et j’essaie de voir laquelle est la plus cohérente. Chez MuSIASEM, en revanche, ils établissent d’avance une méthode de mettre en concours des dépositions imparfaites des témoins en état d’ébriété et ensuite ils l’appliquent de façon cohérente à travers tous les cas de tels témoignages.

Jusqu’à ce point-là, ma méthode est garnie d’assomptions moins fortes que celle de MuSIASEM. De manière générale je préfère des méthodes avec des assomptions faibles. Lorsque je mets en question des idées reçues, tout simplement en les suspendant et en vérifiant si elles tiennent le coup (de suspension), j’ai la chance de trouver plus de trucs nouveaux et intéressants.  Maintenant, je m’offre le plaisir pervers de passer au peigne fin les assomptions fortes de MuSIASEM, juste pour voir où bien puis-je leur enfoncer une épingle. Je commence par l’activité humaine totale, calculée comme le produit de : [la population] x [24 heures] x [365 jours]. Première remarque : le produit 24 heures fois 365 jours = 8760 heures est une constante. Si je compare deux pays aux populations différentes, leur activités humaines totales respectives seront différentes uniquement à travers leurs démographies différentes. Le produit [24 heures] x [365 jours] est donc une décoration redondante du point de vue mathématique. Toutefois, c’est une redondance astucieuse. Le produit 24 heures fois 365 jours = 8760 c’est le facteur de multiplication communément utilisé pour transformer la capacité énergétique en énergie effectivement accessible. On prend la puissance d’une bombe atomique, en joules, on la recalcule en kilowatts, on la multiplie par 24 heures fois 365 jours et boum : on obtient la quantité d’énergie accessible à la population générale si cette bombe explosait continuellement tout le long de l’année. On ajoute toutefois 24 heures supplémentaires d’explosion pour les années bissextiles.

Bombe atomique ou pas, le produit 24 heures fois 365 jours = 8760 est donc utile lorsqu’on veut faire une connexion élégante entre la démographie et la transformation d’énergie, ce qui semble judicieux dans une méthode de recherche qui se concentre précisément sur l’énergie. La multiplication « population x 8760 heures dans l’année » est-elle donc pertinente comme mesure d’activité humaine ? Hmmouiais… peut-être, à la rigueur… Je veux dire, si nous avons des populations très similaires en termes de style de vie et de technologie, elles peuvent démontrer des niveaux d’activité similaires par heure et donc des niveaux d’activité humaine totales distincts uniquement sur la base de leurs démographies différentes. Néanmoins, il nous faut des populations vraiment très similaires. Si nous prenons une portion essentielle de l’activité humaine – la production agricole par tête d’habitant – et nous la comparons entre la Belgique, l’Argentine et Botswana, nous obtenons des coefficients d’activité tout à fait différents.

Je pense donc que les assomptions qui maintiennent l’identité phénoménologique l’activité humaine totale = [la population] x [24 heures] x [365 jours] sont des assomptions tellement fortes qu’elles en deviennent dysfonctionnelles. J’assume donc que la méthode MuSIASEM utilise en fait la taille de la population comme une variable fondamentale, point à la ligne. Moi je fais de même, par ailleurs. Je trouve la démographie jouer un rôle injustement secondaire dans la recherche économique. Je vois que beaucoup de chercheurs utilisent des variables démographiques comme « calibrage » ou « facteurs d’ajustement ».  Tout ce que je sais sur la théorie générale des systèmes complexes, par exemple le créneau de recherche sur la théorie d’automates cellulaires (Bandini, Mauri & Serra 2001[4] ; Yu et al. 2021[5]) ou bien la théorie d’essaims (Gupta & Srivastava (2020[6]), suggère que la taille des populations ainsi que leur intensité d’interactions sociales sont des attributs fondamentaux de chaque civilisation.                    

Je trouve donc que l’identité phénoménologique l’activité humaine totale = [la population] x [24 heures] x [365 jours] dans la méthode MuSIASEM est donc une sorte de ruse, un peu superflue, pour introduire la démographie au cœur de la réflexion sur l’efficience énergétique. Par conséquent, le coefficient métabolique de MuSIASEM, calculé comme la quantité d’énergie par heure d’activité humaine, est équivalent à la consommation d’énergie par tête d’habitant. Le métabolisme énergétique d’une société humaine est donc défini par la consommation d’énergie par tête d’habitant (https://data.worldbank.org/indicator/EG.USE.PCAP.KG.OE ) ainsi que le coût énergétique de PIB (https://data.worldbank.org/indicator/EG.USE.COMM.GD.PP.KD ). Les liens hypertexte entre parenthèses renvoient à des bases de données correspondantes de la Banque Mondiale. Lorsque je regarde ces deux coefficients à travers le monde et je fais un truc absolument simpliste – je discrimine les pays et les régions en une liste hiérarchique – deux histoires différentes émergent. Le coefficient de consommation d’énergie par tête d’habitant raconte une histoire de hiérarchie pure et simple de bien-être économique et social. Plus ce coefficient est élevé, plus le pays donné est développé en termes non seulement de revenu par tête d’habitant mais aussi en termes de complexité institutionnelle, droits de l’homme, complexité technologique etc.

Lorsque j’écoute l’histoire dite par le coût énergétique de PIB (https://data.worldbank.org/indicator/EG.USE.COMM.GD.PP.KD ), c’est compliqué comme une enquête policière. Devinez donc les points communs entre Panama, Sri Lanka, la Suisse, l’Irlande, Malte et la République Dominicaine. Fascinant, non ? Eh bien, ces 6 pays sont en tête de la course planétaire à l’efficience énergétique, puisqu’ils sont tous les six capables de produire 1000 dollars de PIB avec moins de 50 kilogrammes d’équivalent pétrole en énergie consommée. Pour placer leur exploit dans un contexte géographique plus large, les États-Unis et la Serbie sont plus de deux fois plus bas dans cette hiérarchie, tout près l’un de l’autre, à 122 kilogrammes d’équivalent pétrole par 1000 dollars de PIB. Par ailleurs, ça les place tous les deux près de la moyenne planétaire ainsi que celle des pays dans la catégorie « revenu moyen inférieur ».

Si je récapitule mes observations sur la géographie de ces deux coefficients, les sociétés humaines différentes semblent avoir une capacité très idiosyncratique d’optimiser le coût énergétique de PIB à des niveaux différents de la consommation d’énergie par tête d’habitant. C’est comme s’il y avait une façon différente d’optimiser l’efficience énergétique en étant pauvre, par rapport à celle d’optimiser la même efficience lorsqu’on est riche et développé.

Nous, les homo sapiens, on peut faire des trucs vraiment bêtes dans le quotidien mais dans le long terme nous sommes plutôt pratiques, ce qui pourrait notre capacité actuelle de transformer quelque 30% de l’énergie totale à la surface de la planète. Si hiérarchie il y a, cette hiérarchie a probablement un rôle à jouer. Difficile à dire quel rôle exactement mais ça semble important d’avoir cette structure hiérarchique d’efficience énergétique. C’est un autre point où je diverge de la méthode MuSIASEM. Les chercheurs actifs dans le créneau MuSIASEM assument que l’efficience énergétique maximale est un impératif évolutif de notre civilisation et que tous les pays devraient aspirer à l’optimiser. Hiérarchies d’efficiences énergétique sont donc perçues comme un accident historique dysfonctionnel, probablement effet d’oppression des pauvres par les riches. Bien sûr, on peut demander si les habitants de la République Dominicaine sont tellement plus riches que ceux des États-Unis, pour avoir une efficience énergétique presque trois fois supérieure.


[1] Andreoni, V. (2020). The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis. Energy Policy, 139, 111304. https://doi.org/10.1016/j.enpol.2020.111304

[2] Andreoni, V. (2020). The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis. Energy Policy, 139, 111304. https://doi.org/10.1016/j.enpol.2020.111304

[3] Feenstra, Robert C., Robert Inklaar and Marcel P. Timmer (2015), “The Next Generation of the Penn World Table” American Economic Review, 105(10), 3150-3182, available for download at http://www.ggdc.net/pwt 

[4] Bandini, S., Mauri, G., & Serra, R. (2001). Cellular automata: From a theoretical parallel computational model to its application to complex systems. Parallel Computing, 27(5), 539-553. https://doi.org/10.1016/S0167-8191(00)00076-4

[5] Yu, J., Hagen-Zanker, A., Santitissadeekorn, N., & Hughes, S. (2021). Calibration of cellular automata urban growth models from urban genesis onwards-a novel application of Markov chain Monte Carlo approximate Bayesian computation. Computers, environment and urban systems, 90, 101689. https://doi.org/10.1016/j.compenvurbsys.2021.101689

[6] Gupta, A., & Srivastava, S. (2020). Comparative analysis of ant colony and particle swarm optimization algorithms for distance optimization. Procedia Computer Science, 173, 245-253. https://doi.org/10.1016/j.procs.2020.06.029

Les 2326 kWh de civilisation

Mon éditorial sur You Tube

Je reviens à ma recherche sur le marché de l’énergie. Je pense que l’idée théorique a suffisamment mûri. Enfin j’espère.

Dans un marché donné d’énergie il y a N = {i1, i2, …, in} consommateurs finaux, M = {j1, j2, …, jm} distributeurs et Z = {k1, k2, …, kz} fournisseurs primaires (producteurs). Les consommateurs finaux se caractérisent par un coefficient de consommation individuelle directe EC(i). Par analogie, chaque distributeur se caractérise par un coefficient de quantité d’énergie négociée EN(j) et chaque fournisseur primaire se caractérise par un coefficient individuel de production EP(k).

Le marché est à priori ouvert à l’échange avec d’autres marchés, aussi bien au niveau de la fourniture primaire d’énergie qu’à celui du négoce. En d’autres mots, les fournisseurs primaires peuvent exporter l’énergie et les distributeurs peuvent aussi bien exporter leurs surplus qu’importer de l’énergie des fournisseurs étranger pour balancer leur négoce. Logiquement, chaque fournisseur primaire se caractérise par une équation EP(k) = EPd(k) + EPx(k), où EPd signifie fourniture primaire sur le marché local et EPx symbolise l’exportation de l’énergie.

De même, chaque distributeur conduit son négoce d’énergie suivant l’équation EN(j) = ENd(j) + EI(j) + ENx(j)ENx symbolise l’énergie exportée à l’étranger au niveau des relations entre distributeurs, EI est l’énergie importée et ENd est l’énergie distribuée dans le marché local.

L’offre totale OE d’énergie dans le marché en question suit l’équation OE = Z*[EPd(k) – EPx(k)] = M*[ENd(j) + EI(j) – ENx(j)]. Remarquons qu’une telle équation assume un équilibre local du type marshallien, donc le bilan de l’offre d’énergie et de la demande pour énergie se fait au niveau microéconomique des fournisseurs primaires et des distributeurs.

La consommation totale ET(i) d’énergie au niveau des consommateurs finaux est composée de la consommation individuelle directe EC(i) ainsi que de l’énergie ECT(i) consommée pour le transport et de l’énergie incorporée, comme bien intermédiaire ECB(i), dans les biens et services finaux consommés dans le marché en question. Ainsi donc ET(i) = EC(i) + ECT(i) + ECB(i).

La demande totale et finale DE d’énergie s’exprime donc comme

N*ET(i) = N*[EC(i) + ECT(i) + ECB(i)]

et suivant les assomptions précédentes elle est en équilibre local avec l’offre, donc

Z*[EPd(k) – EPx(k)] = N*[EC(i) + ECT(i) + ECB(i)]

aussi bien que

M*[ENd(j) + EI(j) – ENx(j)] = N*[EC(i) + ECT(i) + ECB(i)].

Avant que j’aille plus loin, une explication. Pour le moment j’assume que les coefficients individuels mentionnés plus haut sont des moyennes arithmétiques donc des valeurs espérées dans des ensembles structurées suivant des distributions normales (Gaussiennes). C’est une simplification qui me permet de formaliser théoriquement des « grosses » idées. Je pense que par la suite, j’aurai à faire des assomptions plus détaillées en ce qui concerne la distribution probabiliste de ces coefficients, mais ça, c’est pour plus tard.

Ça, c’était simple. Maintenant, le premier défi théorique que je perçois consiste à exprimer cette observation que j’avais faite il y a des mois de ça : les pays les plus pauvres sont aussi le moins pourvus en énergie. Au niveau du bilan énergétique la pauvreté se caractérise soit, carrément, par la quasi-absence de la consommation d’énergie niveau transport et niveau énergie incorporée dans les biens et services, soit par une quantité relativement petite dans ces deux catégories. C’est à mesure qu’on grimpe les échelons de richesse relative par tête d’habitant que les coefficients ECT(i) et ECB(i) prennent de la substance.

La seconde observation empirique à formaliser concerne la structure de la fourniture primaire d’énergie. Dans les pays les plus pauvres, l’énergie primaire est très largement fournie par ce que l’Agence Internationale d’Énergie définit élégamment comme « combustion des bio fuels » et qui veut tout simplement dire qu’une grande partie de la société n’a pas d’accès à l’électricité et ils se procurent leur énergie primaire en brûlant du bois et de la paille. Formellement, ça compte comme utilisation d’énergies renouvelables. Le bois et la paille, ça repousse, surtout cette dernière. Encore faut se souvenir que ce type d’énergétique est renouvelable au niveau de la source d’énergie mais pas au niveau du produit : le processus relâche du carbone dans l’atmosphère sans qu’on ait une idée vraiment claire comment faire retourner ce génie dans la lampe. La morale (partielle) du conte des fées est que lorsque vous voyez des nombres agrégés qui suggèrent la prévalence d’énergies renouvelables en Soudan du Sud, par exemple, alors ces renouvelables c’est du feu de paille très littéralement.

La différence empirique entre ces pays les plus pauvres et ceux légèrement plus opulents réside dans le fait que ces derniers ont un réseau de fourniture primaire d’électricité ainsi que de sa distribution et ce réseau dessert une large partie de la population. Ce phénomène se combine avec une percée originale d’énergies renouvelables dans les pays en voie de développement : des populations entières, surtout des populations rurales, gagnent l’accès à l’électricité vraiment 100% renouvelable, comme du photovoltaïque, directement à partir d’un monde sans électricité. Ils ne passent jamais par la phase d’électricité fournie à travers des grosses infrastructures industrielles que nous connaissons en Europe.

C’est justement la percée d’électricité dans une économie vraiment pauvre qui pousse cette dernière en avant sur la voie de développement. Comme j’étudie la base des données de la Banque Mondiale à propos de la consommation finale d’énergie par tête d’habitant, je pose une hypothèse de travail : lorsque ladite tête d’habitant dépasse le niveau de quelques 2326 kilowatt heures de consommation finale d’énergie par an, soit 200 kg d’équivalent pétrole, une société quasiment dépourvue d’économie régulière d’échange se transforme en une société qui produit et fait circuler des biens et des services.

Une fois ce cap franchi, le prochain semble se situer aux environs d’ET(i) égale à 600 ± 650 kg d’équivalent pétrole, soit 6 978,00 ± 7 559,50 kilowatt heures par an par tête d’habitant. Ça, c’est la différence entre des sociétés pauvres et en même temps instables socialement ainsi que politiquement d’une part, et celles dotées d’institutions bien assises et bien fonctionnelles. Rien qui ressemble à du paradis, au-dessus de ces 6 978,00 ± 7 559,50 kilowatt heures par an par tête d’habitant, néanmoins quelque chose qui au moins permet de construire un purgatoire bien organisé.

L’étape suivante est la transgression d’un autre seuil, que je devine intuitivement quelque part entre 16 240 kWh et 18 350 kWh par an par tête d’habitant. C’est plus ou moins le seuil officiel qui marque la limite inférieure de la catégorie « revenu moyen » dans la terminologie de la Banque Mondiale. C’est alors qu’on commence à observer des marchés bien développés est des structures institutionnelles tout à fait stables. Oui, les hommes politiques peuvent toujours faire des conneries, mais ces conneries sont immédiatement projetées contre un fonds d’ordre institutionnel et de ce fait sont possibles à contrecarrer de façon autre qu’une guerre civile. Une fois dans la catégorie « revenu moyen », une économie semble capable de transition secondaire vers les énergies renouvelables. C’est le passage des réseaux typiquement industriels, basés sur des grosses centrales électriques, coexistantes avec des réseaux de distribution fortement oligopolistes, vers des systèmes de fourniture d’énergie basés sur des installations locales puisant leur jus des sources renouvelables.

Finalement, à partir de quelques 3000 kg d’équivalent pétrole = 34 890 kWh par an par tête d’habitant c’est la catégorie des pays vraiment riches. En ce qui concerne les énergies renouvelables, des investissements vraiment systémiques commencent au-dessus de ce seuil. C’est une transition secondaire à forte vapeur.

Bon, je formalise. Une variable parmi celles que j’ai nommées quelques paragraphes plus tôt vient au premier plan :  la consommation totale d’énergie par tête d’habitant ou ET(i) = EC(i) + ECT(i) + ECB(i). Les observations empiriques que je viens de décrire indiquent que dans le processus de développement économique des sociétés, le côté droit de l’équation ET(i) = EC(i) + ECT(i) + ECB(i) se déploie de gauche à droite. D’abord, il y a du EC(i). Les gens consomment de l’énergie pour leurs besoins le plus individuels et le plus directement possible. On brûle du bois ou de la paille et on a de l’énergie thermique pour faire de la cuisine, pour décontaminer l’eau et pour se chauffer. Si ça marche, des habitats humains permanents s’établissent.

Je sais que ça sonne comme le compte rendu d’évènements qui se passèrent à l’aube de la civilisation, mais après que j’ai étudié la situation des nations les plus pauvres du monde je sais aussi que c’est bien ce qui se passe dans des pays comme Niger ou Soudan. Le premier défi de ces populations consiste à faire marcher la structure sociale de base, donc à arriver au point quand les communautés locales sont capables de se développer et pour se développer lesdites communautés locales ont tout simplement besoin de s’établir sur une base relativement stable de nourriture et d’énergie.

Une fois que ce cap est franchi, donc une fois qu’ET(i) passe un seuil critique ET1(i), il y a un surplus d’énergie qui peut se traduire comme le développement du transport, ainsi que celui des marchés des biens et des services. En d’autres mots :

ET1(i) = 2 326 kWh

[EC(i) ≤ EC1(i)] => [ET(i) = EC(i) et ECT(i) ≈ 0 et ECB(i) ≈ 0]

[EC(i) > EC1(i)] => [ET(i) = EC(i) + ECT(i) + ECB(i) ; ECT(i) > 0 et ECB(i) > 0]

[EC(i) > EC1(i)] <=> [ECT(i) + ECB(i) = ET(i) – 2 326 kWh]

La seconde valeur critique, que je nomme ET2(i), donne lieu à l’émergence d’une structure institutionnelle suffisamment stable pour être appelée « ordre institutionnel ». Je sais que :

6 978,00 kWh ≤ ET2(i) ≤ 7 559,50 kWh

et que

4652 kWh < [ET2(i) – ET1(i)] ≤ 5233,5 kWh

et de même

{4652 kWh < [ECT(i) + ECB(i)] ≤ 5233,5 kWh}

ainsi que

[6 978,00 kWh ≤ ET2(i) ≤ 7 559,50 kWh] => ordre institutionnel

Alors vient ce troisième seuil, 16 240 kWh ≤ ET3(i) ≤ 18 350 kWh où la transition secondaire vers les énergies renouvelables devient possible. Cette transition prend donc lieu lorsque

13 914 kWh ≤ [ECT(i) + ECB(i)] ≤ 16 024 kWh

Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ?

Vous pouvez donner votre support financier à ce blog

€10.00

Le cycle d’adaptation

Mon éditorial sur You Tube

Je développe sur mon concept d’Étangs Énergétiques (voir « La ville éponge » et « Sponge Cities »). J’ai décidé d’utiliser le Navigateur des Projets, accessible à travers la page de « International Renewable Energy Agency ». La création d’un projet, à travers cette fonctionnalité, contient 6 étapes : a) identification b) analyse stratégique c) évaluation d) sélection e) pré-développement et f) développement proprement dit.

Le long de ce chemin conceptuel, on peut utiliser des exemples et études des cas accessibles à travers la sous-page intitulée « Learning Section ». Pour le moment, je me concentre sur la première phase, celle d’identification. Je liste les questions correspondantes d’abord, telles qu’elles sont présentées dans le Navigateur des Projets et après j’essaie d’y répondre. 

Questions de la phase d’identification du projet :

Groupes sociaux impliqués

Qui est impliqué dans le projet ? (gouvernement central, gouvernements locaux et communautés locales, investisseurs professionnels etc.)

Qui contrôle les résultats du projet et les bénéfices qui en découlent ?

Quels besoins externes doivent être satisfaits pour assurer le succès du projet ?

Quels groupes-cibles sont directement affectés par le projet ?

Qui sont les bénéficiaires ultimes du projet à long terme ?

Problème

Quel est le problème essentiel que le projet prend pour objectif de résoudre ?

Quelles sont ses causes ?

Quels sont les conséquences du problème essentiel ?

Objectifs

Quelle est la situation désirée que le projet doit aider à atteindre ?

Quelles sont les effets directs de la situation désirée ?

Quelles sont les retombées indirectes de la situation désirée ?

Quelles moyens et méthodes doivent être appliqués pour atteindre la situation désirée ?

Alternatives

Quelles actions alternatives peuvent-elles être envisagées ?

Quelle est la stratégie essentielle du projet ?

Comme j’essaie de répondre en ordre à ces questions, un désordre salutaire s’immisce et me fait formuler cette observation générale : dans la plupart des villes européennes, les infrastructures en place pour le drainage d’eau de pluie et la provision d’eau potable sont adaptées, et même très bien adaptées, à un climat qui n’existe plus qu’à peine. Durant des siècles nous avons appris, en Europe, où est la ligne d’inondation dans un endroit donné et quel est le niveau normal d’eau dans la rivière locale. Nous avons construit des systèmes de drainage qui était presque parfaits 30 ans auparavant mais qui sont débordés de plus en plus souvent. Point de vue technologie, nos infrastructures urbaines forment la solution aux problèmes qui s’évanouissent progressivement. Je veux dire qu’il n’y a pas vraiment d’alternative technologique au concept général de la ville-éponge. Les villes européennes sont ce qu’elles sont, dans une large mesure, parce qu’à travers des siècles les communautés locales avaient appris à utiliser les ressources hydrologiques crées par le climat typiquement tempéré. Le climat change et les conditions hydrologiques changent aussi. Les communautés urbaines d’Europe doivent inventer et mettre en place des solutions infrastructurelles nouvelles ou bien elles vont dépérir. J’exagère ? Allez-donc visiter l’Italie. Vous voyez le Nord opulent et le Sud pauvre. Croiriez-vous qu’il y a 2200 ans c’était exactement l’inverse ? Dans les temps de l’Ancienne Rome, république ou empire, peu importe, le Sud était le quartier chic et le Nord c’étaient les terres quasi-barbares. Les conditions externes avaient changé et certaines communautés locales avaient dégénéré.       

Je pense donc que la direction générale que je veux suivre dans le développement de mon concept d’Étangs Énergétiques est la seule direction viable à long-terme. La question est comment le faire exactement. Voilà donc que je viens à la dernière question de la liste d’identification, quelques paragraphes plus tôt : Quelle est la stratégie essentielle du projet ?  Je pense que cette stratégie doit être institutionnelle d’abord et technologique ensuite. Elle doit avant tout mobiliser plusieurs acteurs sociaux autour des projets infrastructurels. Tel que je l’envisage, le projet d’Étangs Énergétiques implique surtout et d’abord des communautés urbaines locales dans les villes européennes qui se trouvent dans des plaines fluviales le long des rivières. Suivant la structure urbaine exacte en place, on peut parler des communautés urbaines strictement dites ou bien des communautés métropolitaines, mais la logique de base reste la même : ces villes font face à un aspect spécifique des changements climatiques, donc à un rythme de précipitations qui évolue vers des averses de plus en plus violentes entrecoupées par des périodes de sécheresse. Les plaines qui longent les rivières européennes se transforment déjà en quelque chose de typiquement fluvial, un peu comme la vallée du Nile en Égypte : l’irrigation naturelle des couches superficielles du sol dépend de plus en plus de ces averses violentes. Cependant, les infrastructures de provision d’eau dans ces communautés urbaines sont, dans leur grande majorité, adaptés aux conditions environnementales du passé, avec des précipitations bien prévisibles, survenant en des cycles longs, avec des chutes de neige substantielles en hiver et des dégels progressifs dans les dernières semaines d’hiver et les premières semaines du printemps.

Les résultats espérés du projet sont les suivants : a) plus d’eau retenue sur place après averses, y compris plus d’eau potable, donc moindre risque de sécheresse et moins de dégâts causés par la sécheresse  b) moindre risque d’inondation, moindre coût de prévention ponctuelle contre l’inondation ainsi qu’un moindre coût des dégâts causés par les inondations c) contrôle des retombées environnementales indirectes de la transformation du terrain en une plaine fluviale de fait d) électricité produite sur place dans les turbines hydrauliques qui utilisent l’eau de pluie.

Lorsque je me repose la question « Qui contrôle ces résultats et qui peut le plus vraisemblablement ramasser la crème des résultats positifs ? », la réponse est complexe mais elle a une logique de base : ça dépend de la loi en vigueur. Dans le contexte légal européen que je le connais les résultats énumérés ci-dessus sont distribués parmi plusieurs acteurs. De manière générale, le contrôle des ressources fondamentales, comme les rivières et l’infrastructure qui les accompagne ou bien le système de provision d’électricité, sont sous le contrôle essentiel des gouvernements nationaux, qui à leur tour peuvent déléguer ce contrôle aux tierces personnes. Ces tierces personnes sont surtout les communautés urbaines et les grandes sociétés infrastructurelles. En fait, dans le contexte légal européen, les habitants des villes n’ont pratiquement pas de contrôle direct et propriétaire sur les ressources et infrastructures fondamentales dont dépend leur qualité de vie. Ils n’ont donc pas de contrôle direct sur les bénéfices possibles du projet. Ils peuvent avoir des retombées à travers les prix de l’immobilier, où ils ont des droits propriétaires, mais en général, point de vue contrôle des résultats, je vois déjà un problème à résoudre. Le problème c’est que quoi qu’on essaie de transformer dans l’infrastructure urbaine des villes européennes, il est dur de cerner qui est le propriétaire du changement, vu la loi en vigueur.

Je veux cerner les risques que mon concept d’Étangs Énergétiques, ainsi que le concept chinois des Villes Éponges, ont pour but de prévenir ou au moins réduire : les risques liés aux inondations et sécheresses qui surviennent en des épisodes apparemment aléatoires. J’ai fait un petit tour de littérature à ce propos. Je commence par les sécheresses. Intuitivement, ça me semble être plus dangereux que l’inondation, dans la mesure où il est quand même plus facile de faire quelque chose avec de l’eau qui est là en surabondance qu’avec de l’eau qui n’est pas là du tout. Je commence avec une lettre de recherche de Naumann et al. (2015[1]) et il y a un truc qui saute aux yeux : nous ne savons pas exactement ce qui se passe. Les auteurs, qui par ailleurs sont des experts de la Commission Européenne, admettent ouvertement que les sécheresses en Europe surviennent réellement, mais elles surviennent d’une manière que nous ne comprenons que partiellement. Nous avons même des problèmes à définir ce qu’est exactement un sécheresse dans le contexte européen. Est-ce que le dessèchement du sol est suffisant pour parler de la sécheresse ? Ou bien faut-il une corrélation forte et négative dudit dessèchement avec la productivité agriculturale ? Aussi prudent qu’il doive être, le diagnostic des risques liées à la sécheresse en Europe, de la part de Neumann et al., permet de localiser des zones à risque particulièrement élevé : la France, l’Espagne, l’Italie, le Royaume Uni, la Hongrie, la Roumanie, l’Autriche et l’Allemagne.

Il semble que les risques liés aux inondations en Europe sont mappés et quantifiés beaucoup mieux que ceux liés aux épisodes de sécheresse. Selon Alfieri et al. (2015[2]), à l’heure actuelle la population affectée par les inondations en Europe est d’environ 216 000 personnes et la tendance est vers un intervalle entre 500 000 et 640 000 personnes en 2050. Côté finances, les dommages annuels causés par les inondations en Europe sont d’à peu près €5,3 milliards, contre quelque chose entre €20 milliards et €40 milliards par an à espérer en 2050. Lorsque je compare ces deux pièces de recherche – l’une sur les épisodes de sécheresse, l’autre sur les inondations – ce qui saute aux yeux est une disparité en termes d’expérience. Nous savons tout à fait précisément ce qu’une inondation peut nous faire dans un endroit donné sous des conditions hydrologiques précises. En revanche, nous savons encore peu sur ce que nous pouvons souffrir par la suite d’un épisode de sécheresse. Lorsque je lis le rapport technique par Vogt et al. (2018[3]) je constate que pour nous, les Européens, la sécheresse est encore un phénomène qui se passe ailleurs, pas chez nous. D’autant plus difficile il nous sera de s’adapter lorsque les épisodes de sécheresse deviennent plus fréquents.

Je commence donc à penser en termes de cycle d’adaptation : un cycle de changement social en réponse au changement environnemental. Je crois que le premier épisode d’inondation vraiment massive chez moi, en Pologne, c’était en 1997. En revanche, la première sécheresse qui s’est fait vraiment remarquer chez nous, à travers des puits asséchés et des centrales électriques menacées par des problèmes de refroidissement de leurs installations, du au niveau exceptionnellement bas d’eau dans les rivières, ça semble avoir été en 2015. Alors, 2015 – 1997 = 18 ans. C’est étrange. C’est presque exactement le cycle que j’avais identifié dans ma recherche sur l’efficience énergétique et ça me fait repenser l’utilisation d’intelligence artificielle dans ma recherche. Le premier truc c’est l’application cohérente du perceptron pour interpréter les résultats stochastiques de ma recherche sur l’efficience énergétique. La deuxième chose est une généralisation de la première : cela fait un bout de temps que je me demande comment connecter de façon théorique les méthodes stochastiques utilisées dans les sciences sociales avec la structure logique d’un réseau neuronal. L’exemple de parmi les plus évidents, qui me vient maintenant à l’esprit est la définition et l’utilisation d’erreur. Dans l’analyse stochastique nous calculons une erreur standard, sur la base d’erreurs observées localement en ensuite nous utilisons cette erreur standard, par exemple dans le test t de Student. Dans un réseau neuronal, nous naviguons d’erreur locale en erreur locale, pas à pas et c’est de cette façon que notre intelligence artificielle apprend. Le troisième truc c’est la connexion entre les fonctions d’un réseau neuronal d’une part et deux phénomènes de psychologie collective : l’oubli et l’innovation.

Alors, efficience énergétique. Dans le brouillon d’article auquel je me réfère, j’avais posé l’hypothèse générale que l’efficience énergétique d’économies nationales est significativement corrélée avec les variables suivantes :

  1. Le coefficient de proportion entre l’amortissement agrégé d’actifs fixes et le PIB ; c’est une mesure de l’importance économique relative du remplacement des technologies anciennes par des technologies nouvelles ;
  2. Le coefficient du nombre des demandes nationales de brevet par 1 million d’habitants ; c’est une mesure d’intensité relative de l’apparition des nouvelles inventions ;
  3. Le coefficient de l’offre d’argent comme pourcentage du PIB, soit l’inverse de la bonne vieille vélocité de l’argent ; celui-là, c’est un vieux pote à moi : je l’ai déjà étudié, en connexion avec (i) et (ii), dans un article en 2017 ; comme vous avez pu le suivre sur mon blog, je suis très attaché à l’idée de l’argent comme hormone systémique des structures sociales ;
  4. Le coefficient de consommation d’énergie par tête d’habitant ;
  5. Le pourcentage d’énergies renouvelables dans la consommation totale d’énergie ;
  6. Le pourcentage de population urbaine dans la population totale ;
  7. Le coefficient de PIB par tête d’habitant ;

Bien sûr, je peux développer toute une ligne de réflexion sur les inter-corrélations de ces variables explicatives elles-mêmes. Cependant, je veux me concentrer sur une méta-régularité intéressante que j’avais découverte. Alors, vu que ces variables ont des échelles de mesure très différentes, j’avais commencé par en tirer des logarithmes naturels et c’était sur ces logarithmes que je faisais tous les tests économétriques. Comme j’eus effectué la régression linéaire de base sur ces logarithmes, le résultat vraiment robuste me disait que l’efficience énergétique d’un pays – donc son coefficient de PIB par kilogramme d’équivalent pétrole de consommation finale d’énergie – ça dépend surtout de la corrélation négative avec la consommation d’énergie par tête d’habitant ainsi que de la corrélation positive avec le PIB par tête d’habitant. Les autres variables avaient des coefficients de régression plus bas d’un ordre de magnitude ou bien leurs signifiance « p » selon le test t de Student était plutôt dans l’aléatoire. Comme ces deux coefficients sont dénommés par tête d’habitant, la réduction du dénominateur commun me conduisait à la conclusion que le coefficient du PIB par unité de consommation d’énergie est significativement corrélé avec le coefficient de PIB par unité de consommation d’énergie. Pas vraiment intéressant.      

C’est alors que j’ai eu cette association bizarroïde d’idées : le logarithme naturel d’un nombre est l’exposante à laquelle il faut élever la constante « e » , donc e = 2,71828 pour obtenir ledit nombre. La constante e = 2,71828, à son tour, est le paramètre constant de la fonction de progression exponentielle, qui possède une capacité intrigante de refléter des changement dynamiques avec hystérèse, donc des processus de croissance où chaque épisode consécutif bâtit sa croissance locale sur la base de l’épisode précèdent.

Dans la progression exponentielle, l’exposante de la constante e = 2,71828 est un produit complexe d’un paramètre exogène « a » et du numéro ordinal « t » de la période de temps consécutive. Ça va donc comme y = ea*t . Le coefficient de temps « t » est mesuré dans un calendrier. Il dépend de l’assomption en ce qui concerne le moment originel de la progression : t = tx – t0tx est le moment temporel brut en quelque sorte et t0 est le moment originel. Tout ça c’est de l’ontologie profonde en soi-même : le temps dont nous sommes conscients est une projection d’un temps sous-jacent sur le cadre d’un calendrier conventionnel.

Moi, j’ai utilisé cette ontologie comme prétexte pour jouer un peu avec mes logarithmes naturels. Logiquement, le logarithme naturel d’un nombre « » peut s’écrire comme l’exposante de la constante « e » dans une progression exponentielle, donc ln(x) = a*t. Comme t = tx – t0 , la formulation exacte du logarithme naturel est donc ln(x) = a*(tx – t0). Logiquement, la valeur locale du coefficient exogène « a » dépend du choix conventionnel de t0. C’est alors que j’avais imaginé deux histoires alternatives : l’une qui avait commencé un siècle avant – donc en 1889, vers la fin de la deuxième révolution industrielle – et l’autre qui avait commencé en 1989, après le grand changement politique en Europe et la chute du mur de Berlin.

J’avais écrit chaque logarithme naturel dans mon ensemble des données empiriques dans deux formulations alternatives : ln(x) = a1*(tx – 1889) ou alors ln(x) = a2*(tx – 1989). Par conséquent, chaque valeur empirique « x » dans mon échantillon acquiert deux représentations alternatives : a1(x) = ln(x) / (tx – 1889) et a2(x) = ln(x) / (tx – 1989).  Les « a1 » c’est de l’histoire lente et posée. Mes observations empiriques commencent en 1990 et durent jusqu’en 2014 ; a1(x ; 1990) = ln(x)/101 alors que a1(x ; 2014) = ln(x)/125. En revanche, les « a2 » racontent une histoire à l’image d’une onde de choc qui se répand avec force décroissante depuis son point d’origine ; a2(x ; 1990) = ln(x)/1 pendant que a2(x ; 2014) = ln(x)/25.

J’ai repris la même régression linéaire – donc celle que j’avais effectué sur les logarithmes naturels ln(x) de mes données – avec les ensembles transformés « a1(x) » et « a2(x) ». Je cherchais donc à expliquer de façon stochastiques les changements observés dans « a1(efficience énergétique) » ainsi que « a2(efficience énergétique) » par régression sur les « a1(x) » et « a2(x) » des variables explicatives (i) – (vii) énumérées plus haut. La régression des « a1 » paisibles tire de l’ombre l’importance de la corrélation entre l’efficience énergétique et le pourcentage de population urbaine dans la population totale : plus de citadins dans la population totale, plus efficiente énergétiquement est l’économie du pays. Lorsque je régresse sur les « a2 » en onde de choc faiblissante, la corrélation entre l’urbanisation et l’efficience énergétique gagne en force et une autre apparaît : celle avec l’offre d’argent comme pourcentage du PIB. Plus de pognon par unité de PIB, plus de PIB par kilogramme d’équivalent pétrole consommé.

Ici, j’ai un peu le même doute qu’à chaque fois que je vois une technique stochastique nouvelle, par exemple lorsque je compare les résultats de régression linéaire selon la méthode des moindres carrés avec les mêmes données empiriques traitées avec des méthodes comme GARCH ou ARIMA. Les méthodes différentes de calcul appliquées aux mêmes données de départ donnent des résultats différents : c’est normal. Néanmoins, ces résultats différents sont-ils des manifestations de quelque chose réellement différent ? Ce qui me vient à l’esprit est le concept du cycle Schumpétérien. Dans son livre célèbre intitulé « Business Cycles », l’économiste Autrichien Joseph Aloïs Schumpeter avait formulé la thèse qui depuis s’est bien installée dans les sciences sociales : celle du cycle de changement technologique. Mes résultats de recherche indiquent que les changements d’efficience énergétique forment des corrélations les plus cohérentes avec d’autres variables prises en compte lorsque j’impose une analyse de cycle, avec un moment initial hypothétique. Comment ce cycle est lié aux comportements individuels et collectifs, donc comment puis-je l’étudier comme phénomène d’intelligence collective ? 

Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ? Vous pouvez me contacter à travers la boîte électronique de ce blog : goodscience@discoversocialsciences.com .


[1] Gustavo Naumann et al. , 2015, Assessment of drought damages and their uncertainties in Europe, Environmental Research Letters, vol. 10, 124013, DOI https://doi.org/10.1088/1748-9326/10/12/124013

[2] Alfieri, L., Feyen, L., Dottori, F., & Bianchi, A. (2015). Ensemble flood risk assessment in Europe under high end climate scenarios. Global Environmental Change, 35, 199-212.

[3] Vogt, J.V., Naumann, G., Masante, D., Spinoni, J., Cammalleri, C., Erian, W., Pischke, F., Pulwarty, R., Barbosa, P., Drought Risk Assessment. A conceptual Framework. EUR 29464 EN, Publications Office of the European Union, Luxembourg, 2018. ISBN 978-92-79-97469-4, doi:10.2760/057223, JRC113937

La ville – éponge

Mon éditorial sur You Tube

Je développe sur le concept que je viens d’esquisser dans ma dernière mise à jour en anglais : « Another idea – urban wetlands ». C’est un concept d’entreprise et concept environnementaliste en même temps : un réseau d’étangs et des cours d’eau qui serviraient à la fois comme réserve d’eau et l’emplacement pour un réseau des petites turbines hydrauliques.  Oui, je sais, je n’en ai pas encore fini avec EneFin, le concept financier. Je compte de l’appliquer ici de façon créative. Point de vue mécanique des liquides, l’esquisse de l’idée est la suivante. On a besoin d’une rivière qui sera la source primaire d’eau pour le système. Dans les environs immédiats de cette rivière nous construisons un réseau des cours d’eau et d’étangs. Les étangs jouent le rôle des réservoirs naturels d’eau. Ils collectent un certain surplus d’eau de pluie conduite par la rivière. De cette façon, l’eau de pluie est mise en réserve.

Les cours d’eau connectent la rivière avec les étangs ainsi que les étangs entre eux. Les cours d’eau ont une double fonction. D’une part, ils sont l’emplacement à proprement dit des petites turbines hydrauliques qui produisent l’électricité. D’autre part, ils assurent de la circulation d’eau dans le système afin de minimiser la putréfaction de débris organiques dans les étangs et par la même façon de minimiser l’émission de méthane. Le tout est complété par les cultures d’arbres et arbustes. Ces grosses plantes vertes ont une double fonction aussi. D’une part, leurs racines servent de stabilisateurs pour le sol du système, qui en raison de l’abondance d’eau peut avoir tendance à bouger. D’autre part, ces plantes vont absorber du carbone de l’atmosphère et contrebalancent ainsi les émissions des gaz de putréfaction des étangs.

La façon dont le système entier se présente dépend de la dénivellation relative du terrain. Le design de base c’est dans le terrain plat (ou presque) où la circulation d’eau dans le réseau est forcée par la pression provenant de la rivière. La présence des monts et vallées change le jeu : à part la pression de flux riverain, on peut utiliser les siphons romains pour créer un courant additionnel.

Je sais que dès un système comme celui-là est proposé, l’objection courante est celle à propos des moustiques. Des étangs à proximité d’habitations humaines veulent dire des tonnes de moustiques. L’une des observations pratiques sur lesquelles je me base est que ça arrive de toute façon. Je peux observer ce phénomène chez moi, en Pologne du sud. Année après année, certains endroits progressivement s’imbibent d’eau. Des petits creux de terrains se transforment en des marais microscopiques. Des complexes résidentiels entiers dans les banlieues des grandes villes connaissent des vagues de travaux de rénovation pour renforcer l’isolation hydrophobe des fondements.  Oui, ça arrive déjà et le problème c’est que ça pose que des problèmes, sans retombés positifs niveau accès à l’eau potable. Autant civiliser le phénomène. Ci-dessous, je présente une carte d’Europe Centrale et Méridionale, où les emplacements des vallées fluviales sont marqués.

En plus, on peut de débarrasser des moustiques – ou les rendre, au moins, presque inoffensifs – avec l’aide de la végétation adéquate. J’ai fait un peu de recherche et voilà la liste des plantes qui repoussent les moustiques et qui donc, si plantées abondamment à travers ces structures faites d’étangs et des cours d’eau, peuvent largement résoudre ce problème-là :  la citronnelle (Cymbopogon nardus), la mélisse officinale (Melissa officinalis), la cataire (Nepeta cataria)

le souci officinal (Calendula officinalis), la rose d’Inde (Tagetes erecta), l’œillet d’Inde (Tagetes patula), la Tagète lucida (Tagetes lucida), la Tagète citron (Tagetes tenuifolia), Baileya multiradiata (pas de nom français distinctif, pour autant que je sache), le populage des marais (Caltha palustres), le basilic (Ocimum basilicum), la lavande (famille Lamiacae), la menthe poivrée (Mentha x piperita), l’ail (Allium sativum), la menthe pouliot (Mentha pulegium), le romarin (Rosmarinus officinalis) et finalement les géraniums (famille Geraniums).

Source: https://www.eea.europa.eu/data-and-maps/figures/floodplain-distribution dernier accès 20 Juin 2019

Ah, oui, j’ai oublié : dans un premier temps, je veux étudier la possibilité d’installer tout ce bazar dans l’environnement urbain, quelque chose comme des marais civilisés et citadins, Ça fait plus d’un an que j’ai abordé le sujet des villes intelligentes et ben voilà un concept qui va à merveille. Je veux développer cette idée comme projet de promotion immobilière. Je me suis dit que si je réussis à y donner une forme purement entrepreneuriale, ce sera le test le plus exigeant en termes de faisabilité. Je veux dire que si c’est profitable – ou plutôt s’il y a des fortes chances que ce soit profitable – le concept peut se développer sans aide publique. Cette dernière peut apporter du changement positif additionnel, bien sûr, mais le truc peut se développer par la force des marchés locaux de l’immobilier. Voilà donc que je considère la valeur économique d’un projet comme la valeur actuelle nette du flux de trésorerie. Sur un horizon de « n » périodes, deux choses adviennent : le projet génère un flux de trésorerie, d’une part, et il note un changement de valeur du marché d’autre part. La formule que je présente ci-dessous est une modification de celle présentée par Hatata et al. 2019[1]. À part une notation légèrement modifiée, j’élimine la catégorie séparée des coûts de maintenance des installations et je les inclue dans la catégorie générale des coûts opérationnels. En revanche, si les dépenses sur la maintenance courante des installations sont une compensation de l’amortissement physique et donc s’ils constituent des additions à la valeur brute des biens immobiliers, on les compte comme investissement.  


Je commence l’application empirique de la formule par étudier le marché des terrains de construction en Europe, plus spécialement dans les zones riveraines. Je retourne à la comparaison entre ma ville natale, Krakow, Pologne, où je vis, en Lyon, France, où j’avais passé quelques années autant troublées qu’intéressantes de mon adolescence. Krakow d’abord : 1 mètre carré de terrain de construction, dans la ville-même, coûte entre €115 et €280. À Lyon, la fourchette des prix est plus large et plus élevée : entre €354 et €1200 par m2.

Question : quelle superficie pourrait bien avoir un terrain urbain transformé en ce marécage artificiel ? Question dure à répondre. J’essaie de l’attaquer par le bout aquatique. Ce système a pour une des fonctions de stocker, dans le réseau d’étangs, suffisamment d’eau de pluie pour satisfaire la demande de la population locale et de laisser encore un surplus résiduel. J’ai fait un peu de recherche sur la quantité d’eau consommée dans les ménages. En fait, il y a peu de données claires et sans équivoque sur le sujet. La source qui a l’air d’être la plus sérieuse est AQUASTAT – Système d’information mondial de la FAO sur l’eau et l’agriculture.

Une déconstruction prudente des données publiées par la Banque Mondiale indique que la consommation domestique d’eau en France est d’à peu près 81 ÷ 82 m3 par personne par an, soit entre 81 000 et 82 000 litres. En Danemark, c’est à peu près 59 ÷ 60 m3 par personne par an (59 000 ÷ 60 000 litres) et je n’ai aucune idée où cette différence peut bien venir. J’ai déjà éliminé l’usage non-domestique, au moins selon la structure logique des données présentées par la banque mondiale. En revanche, lorsque j’ai étudié quelques publications polonaises sur le sujet, il paraît que la consommation domestique d’eau est plutôt répétitive à travers l’Europe et elle oscille entre 36 et 40 m3 par personne par an.

Il y a certainement une source de ces disparités : la distinction entre, d’une part, la consommation ménagère strictement comptée, avec des compteurs d’eau associés aux personnes précises et d’autre part, la consommation personnelle totale, y compris l’usage d’eau de puits et d’eau en bouteilles et bidons. Du point de vue hydrologique, chaque endroit sur Terre reçoit une certaine quantité d’eau Ep de précipitations atmosphériques – donc de pluie ou de neige – ainsi qu’à travers des rivières qui apportent l’eau des territoires adjacents. Le même endroit déverse une quantité définie Ed d’eau dans les mers et océans adjacents, à travers les fleuves. Le territoire entier perd aussi une quantité définie Ev d’eau par évaporation. La différence Er = Ep – Ev – Ed est la quantité absorbée par le territoire.

Lorsque nous, les humains, utilisons l’eau dans notre vie quotidienne, la plupart de cette consommation atterrit dans des égouts de toute sorte, qui la conduisent vers et dans le réseau fluvial. Oui, lorsque nous arrosons nos jardins, une partie de cette eau s’évapore, mais la grande majorité de notre consommation d’eau entre dans la composante Ed ci-dessus. Le flux Ed peut être décomposé en deux sous-flux : le flux strictement naturel Ed-n d’eau qui coule tout simplement, ça et là, et le flux Ed-h qui passe à travers l’utilisation humaine. Pour être tout à fait précis, on peut adopter la même distinction pour l’eau d’évaporation, donc Ev = Ev-n + Ev-h.

Le sentier conceptuel préliminairement défriché, je peux passer en revue un peu de littérature. Katsifarakis et al. (2015[1]) décrivent l’application d’une structure urbaine appelée « jardin pluvial » (« rain garden » en anglais). Grosso modo, un jardin pluvial est une agglomération des structures superficielles qui favorisent la collection d’eau de pluie – égouts, puits, arbustes, près humides, étangs ouverts – avec des structures souterraines qui favorisent la rétention de la même eau dans des couches successives du sol. Ici, ‘y a un truc intéressant que l’article de Katsifarakis et al. suggère comme attribut possible d’un jardin pluvial : le drainage inversé. Normalement, les tuyaux de drainage servent à éconduire l’eau de pluie en dehors du terrain donné. Cependant, il est possible d’enfoncer les tuyaux de drainage verticalement, vers et dans les couches profondes du sol, pour favoriser la rétention d’eau de pluie dans des poches souterraines profondes, un peu comme des poches artésiennes. J’ai essayé de présenter l’idée visuellement ci-dessous. Normalement, un étang, ça se creuse jusqu’à ce qu’on arrive à une couche géologique imperméable ou peu perméable. C’est comme ça que l’eau reste dedans. Si en-dessous de cette couche imperméable il y a une nappe perméable et poreuse, capable de retenir de l’eau, une nappe aquifère peut se former dans les roches sous l’étang. L’étang de surface est alors une structure de captage et la rétention proprement dite survient dans l’aquifère sous-jacent. Remarquez, faut faire gaffe avec le drainage renversé et les aquifères. Ça marche bien dans des endroits vraiment plats et naturellement fluviaux, comme dans les plaines riveraines d’une rivière. C’est plat et – grâce au boulot qu’avaient fait les glaciers, dans le passé – ça contient des larges poches sableuses insérées entre des nappes rocheuses imperméables. En revanche, si le terrain est en pente ou bien s’il se termine par une falaise, un aquifère peut provoquer des glissements de terrain gigantesques.  

Alors, voyons voir comment des trucs comme drainage inversé peuvent marcher pour stocker l’eau de pluie ou bien celle d’inondation. Je m’en tiens à mes deux exemples : Krakow en Pologne et Lyon en France. En France, les précipitations annuelles moyennes[1] sont de 867 milimètres par an par mètre carré ; en Pologne, c’est 600 mm. Un milimètre de précipitation par mètre carré veut dire 1 litre, donc 0,001 mètre cube. En France, le mètre carré moyen de territoire collecte donc 0,867 m3 de précipitations annuelles, avec une consommation moyenne ménagère d’environ 81,69 m3 par personne par an. Pour que la personne moyenne aie sa consommation d’eau contrebalancée par le stockage d’eau de pluie, il faut donc 81,69 m3 / 0,867 [m3/m2] = 94,23 m2 de surface de collection d’eau. Ajoutons à ceci un surplus de 20%, à titre de stockage résiduel par-dessus la consommation courante : ceci fait 94,23 m2 * 1,2 = 113,07 m2. En d’autres mots, en France, l’eau de pluie (ou neige) collectée de la surface d’environ 113 ÷ 114 mètres carrés de terrain ouvert exposé directement aux précipitations peut pourvoir, si captée proprement, à la consommation moyenne d’eau d’une personne plus un résidu mis en réserve.

En ce qui concerne la Pologne, même la source la plus exhaustive, donc AQUASTAT de FAO, ne donne pas d’estimation de consommation d’eau par personne. Je vais donc faire un petit tour de maths, prendre les estimations pour la France et les comparer avec un pays voisin à tous les deux, donc l’Allemagne : consommation totale d’eau par personne par an égale à 308,5 mètres cube, dont la consommation ménagère devrait prendre à peu de choses près 20%, soit 62 m3. J’assume donc qu’un Polonais moyen consomme ces 62 m3 d’eau par an, j’y ajoute 20% pour stockage résiduel, ce qui me fait 74,4 m3. Je divise ça par les 0,6 m3 de précipitations annuelles par mètre carré. En fin de compte j’obtiens 124 m2 de surface arrangée en jardin pluvial. Encore une fois, je résume graphiquement.


Je reviens à la revue de littérature. Shao et al. (2018[1]) présentent un concept similaire au mien : la ville – éponge ou « sponge city » en anglais. La ville – éponge absorbe l’eau et le carbone. E plus, grâce à l’absorption de l’eau pluviale, la ville – éponge a besoin de moins d’énergie pour pomper l’eau dans l’infrastructure urbaine et de cette façon une telle structure dégage moins de CO2. La ville – éponge combine la verdure et les jardins pluviaux avec des zones marécageuses, comme le concept que j’essaie de développer. Selon les estimations présentées par Shao et al., la capacité d’absorption de carbone dans des villes – éponges déjà mises en place en Chine est très variable : de 4,49 grammes de carbone par an par mètre carré dans les marécages des plaines du Nord – Est de Chine jusqu’à 56,67 grammes par an par mètre carré dans les marécages des lacs des plaines orientales. Shao et al. présentent une analyse détaillée de la ville de Xiamen. Avec 3,5 millions d’habitants, une surface totale de 1 865 km2 et son infrastructure de ville – éponge couvrant à peu près 118 kilomètres carrés, la ville de Xiamen compte retenir 17,18 millions des mètres cubes d’eau de pluie par an, à travers la technologie des structures – éponge.

Pour donner une image complète, il faut dire que Xiamen note des précipitations tout à fait significatives : 1131 millimètres par an, selon le service Climate-Data.org[2]. Bon, calmons le jeu, parce qu’il y a quelque chose qui cloche dans ces calculs de par Shao et al. J’assume que l’infrastructure de la ville – éponge collecte l’eau de pluie de toute la ville, donc que les 118 km2 de cette infrastructure absorbent l’eau qui tombe sur la surface totale des 1 865 km2 de la ville. Les précipitations annuelles de 1131 millimètres –  donc 1,131 m3 – par mètre carré donnent 1865000 m2 * 1,131 m3/m2 =  2 109 315 m3. Cela voulait dire que selon les calculs de Shao et al. l’infrastructure – éponge de Xiamen absorbe 8 fois plus d’eau de pluie qu’il y a de pluie. Ambitieux mais peu réaliste.  La hydrologie, c’est compliqué. Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ? Vous pouvez me contacter à travers la boîte électronique de ce blog : goodscience@discoversocialsciences.com .


[1] Shao, W., Liu, J., Yang, Z., Yang, Z., Yu, Y., & Li, W. (2018). Carbon Reduction Effects of Sponge City Construction: A Case Study of the City of Xiamen. Energy Procedia, 152, 1145-1151.

[2] https://en.climate-data.org/asia/china/fujian/xiamen-2623/ dernier accès 30 Juin 2019

[1] https://data.worldbank.org/indicator/AG.LND.PRCP.MM dernier accès 30 Juin 2019

[1] Katsifarakis, K. L., Vafeiadis, M., & Theodossiou, N. (2015). Sustainable drainage and urban landscape upgrading using rain gardens. Site selection in Thessaloniki, Greece. Agriculture and agricultural science procedia, 4, 338-347.

[1] Hatata, A. Y., El-Saadawi, M. M., & Saad, S. (2019). A feasibility study of small hydro power for selected locations in Egypt. Energy Strategy Reviews, 24, 300-313.

Mémoires du cycliste reconverti

Mon éditorial sur You Tube

Je réfléchis sur les tendances que j’observe dans le secteur d’énergie. Je reformule ce que je viens de signaler dans « Lean, climbing trends » : le côté consommation d’énergie change selon un schéma très différent du côté production d’énergie. Côté consommation, nous pouvons observer des tendances relativement stables et croissantes, centrées autour deux indicateurs : de la consommation d’énergie par tête d’habitant et du pourcentage de la population avec accès à l’électricité. Côté production, c’est structurellement différent. Les carburants fossiles, le nucléaire, l’hydraulique, l’éolien, le solaire : notre activité agrégée avec toutes ces sources d’énergie semble être un assemblage un peu aléatoire d’expérimentations plus ou moins indépendantes l’une de l’autre.

Lorsque je me pose des questions sur l’intelligence collective, je retourne vers l’intelligence individuelle et celle qui est la plus proche est la mienne. Je viens de me rendre compte que pendant les deux dernières années, j’ai radicalement changé mon mode de vie, pour un mode nettement plus éco qu’auparavant, seulement le truc marrant c’est que je n’avais pas du tout l’intention de devenir plus éco. Ça avait tout commencé avec le vélo. J’avais commencé à circuler à travers la ville à vélo. Très vite, j’ai découvert ce sens spécial de liberté que le vélo donne dans l’environnement urbain. Mon cerveau a commencé à associer la voiture avec une claustration forcée plutôt qu’avec la liberté de déplacement. Bientôt, j’avais commencé à me rendre à vélo à mon lieu de travail – l’université – quelques 10 km de mon domicile. Ma bagnole, elle passait de plus en plus de temps garée à côté de la maison.

L’hiver dernier était ce que les hivers sont devenus, donc une sorte d’automne un peu froid. Voilà que j’ai découvert que rouler à vélo par un temps comme ça, lorsque la température est à peine au-dessus de zéro, donne une injection folle d’endorphines. C’était carrément enivrant et je peux vous dire qu’à la cinquantaine, faire 20 km aller-retour à vélo et se sentir bien après, c’est une découverte en soi. Comme je prenais de plus en plus l’habitude du vélo, je m’étais rendu compte que mon style de vie change. Lorsque je faisais mes courses, sur le chemin de retour de la fac, j’achetais ce que je pouvais transporter dans les sacoches de derrière de mon vélo plus ce que je pouvais fourrer dans mon sac à dos, où je transporte ma tenue de travail : veste, chemise, pantalons de ville. Le vélo m’avait obligé à économiser sur le volume de mes course quotidiennes et le truc intéressant est que ce volume réduit était tout à fait suffisant. Je me suis rendu compte qu’une partie substantielle de ce que j’achète en me déplaçant en voiture, eh bien, je l’achète juste parce que je peux (j’ai de l’espace cargo disponible) et non parce que j’en ai vraiment besoin.

J’ai fait mes calculs. J’ai utilisé la page https://www.carbonfootprint.com pour calculer les émissions de CO2 de ma voiture et voilà : une journée de déplacement à vélo, avec mon Honda Civic m’attendant gentiment à la maison, se traduit en des économies de 4,5 kilogrammes de dioxyde de carbone. Selon les données de la Banque Mondiale[1], en 2014, chez moi, en Pologne, les émissions de CO2 par tête d’habitant étaient de 7,5 tonnes par an, contre une moyenne mondiale de 4,97 tonnes par an. Le transport correspond à environ 20%[2] de ces émissions, donc à 1,5 tonnes par an, soit 4,1 kilogrammes par jour en moyenne. Ces 4,5 kilo de CO2 par jour, ça a donc l’air cohérent avec le style de vie d’un Polonais moyen.

Mes économies sur les courses journalières, lorsque je pédale, ça fait à peu de choses près €30 par semaine. En utilisant encore une fois la page https://www.carbonfootprint.com je l’ai recalculé en 4,5 kilogrammes de CO2 économisés par jour. Ça alors ! De tout en tout, une journée à vélo, dans mon contexte social précis, semble correspondre à quelques 9 kilogrammes de CO2 de moins, par rapport à la même journée en bagnole. Les moins ont des plus, remarquez. Lorsque je pédale, j’amortis physiquement ma bicyclette. Chaque kilomètre me rapproche du moment de la révision annuelle aussi bien que du moment où il sera nécessaire de changer de vélo ou bien de rénover radicalement celui que j’ai maintenant (Gazelle Chamonix C-7). J’ai utilisé les calculs présentés à la page https://momentummag.com/how-green-is-your-bicycle-manufacturing/ plus la calculatrice de conversion des kilojoules d’énergie en du CO2 émis et ça a donné 150 grammes de CO2 par jour en équivalent d’amortissement physique de ma bicyclette.

De tout en tout, une journée ouvrable passée en mode vélo correspond, dans mon style de vie individuel, à une réduction nette d’émissions d’environ 9 – 0,15 = 8,85 kg de CO2. J’ai récréé mon agenda de l’année 2018 et ça a donné quelques 130 jours ouvrables lorsque je remplaçais la voiture avec le vélo. Remarquez, lorsque le temps devient suffisamment hivernal pour qu’il y ait une couche de vieille neige ou du verglas sur les sentiers cyclistes, je me rends. Je me suis déjà cassé la gueule quelques fois dans des conditions comme ça et j’ai appris que le vélo a ses limites. Quoi qu’il en soit, les 130 jours en 2018 correspondent à une réduction individuelle d’émissions de CO2 équivalente à environ 1,15 tonnes, soit de 15,3% par rapport aux émissions annuelles moyennes par tête d’habitant en Pologne.

Voilà donc que j’ai changé de mode de transport et ceci m’a poussé à modifier mon style de consommation. De plus en plus éco à chaque pas. Seulement, ce n’était pas mon but. Ça avait tout commencé parce que je voulais me déplacer d’une façon plus confortable et j’en avais marre de passer du temps dans les embouteillages. Très honnêtement, je ne pensais pas beaucoup à l’environnement. J’étais très loin du type Capitaine Planète. Bien sûr, je savais qu’en laissant ma voiture roupiller paisiblement chez moi, j’économise du carburant, mais c’étaient des pensées vagues. Ça s’était passé tout seul. Chaque petit changement en entraînait un autre, comme je recevais des récompenses momentanées. Aucune privation consciente. C’était une revisite du côté de chez Adam Smith : en suivant des fins égoïstes j’avais accompli un changement favorable à l’environnement.

Mon environnement m’a offert des stimuli pour changer mon style de vie. Imaginons des milliers de personnes comme moi. Des petites découvertes quotidiennes, des petits changements personnels suivis par des récompenses immédiates : l’environnement urbain donné offre un ensemble fini de telles récompenses. Eh bien, oui, c’est fini en volume, ces récompenses. Si dès maintenant 50 000 personnes dans ma ville (Krakow, Pologne) font le même changement que moi j’avais fait, les sentiers cyclistes seront complètement bouchés et les récompenses, ça va devenir beaucoup plus problématique. Au moment donné, la ville relâche un nuage diffus et néanmoins fini en volume des récompenses comportementales qu’un certain nombre de cyclistes peut absorber et ça provoque un changement de style de vie.

J’essaie d’être plus précis. La population officielle de la ville de Krakow c’est environ 800 000 personnes. Avec les immigrés non-registrés comme résidents permanents ainsi qu’avec les migrants journaliers qui viennent des localités satellites, comme moi je le fais, j’estime la population totale réelle de ma ville bien aimée à quelques 1 200 000 personnes. Cette population coexiste avec environ 230 km des sentiers cyclistes ainsi qu’avec une flotte automobile (toutes catégories prises ensemble) de 570 000 à peu près. Chaque addition à la flotte automobile crée un renforcement négatif en ce qui concerne l’utilisation individuelle de la voiture et en même temps un renforcement positif indirect pour penser à quelque chose d’autre. Chaque addition à la longueur totale des sentiers cyclistes produit du renforcement positif en faveur de circulation à vélo. En termes de production de ces stimuli, la ville de Krakow avait produit, durant la période de 2011 à 2018, 122 kilomètres additionnels des sentiers cyclistes et une flotte additionnelle d’environ 115 000 automobiles. Cette combinaison des renforcements négatifs vis-à-vis de la voiture et positifs vis-à-vis de la bicyclette. Résultat : en 2016, selon les données du Conseil Municipal, environ 90 000 personnes utilisaient le vélo comme moyen de transport plus ou moins régulier et l’année dernière, en 2018, le chiffre pouvait même atteindre 200 000 personnes.

Plusieurs fois dans ma vie, j’ai eu cette impression étrange que les grandes villes sont comme des organismes vivants. Ce sentiment devient particulièrement vivace lorsque j’ai l’occasion d’observer une grande ville la nuit, ou même mieux, à l’aube, à partir d’un point d’observation élevé. En 2013, j’ai eu l’occasion de contempler de cette façon le panorama de Madrid, lorsque la ville se réveillait. L’impression que je vois une énorme bête qui s’étire et dont le sang (le flux de trafic routier) commence à couler plus vite dans les veines était si poignante que j’avais presque envie de tendre la main et de caresser la crinière du géant, faite d’un alignement des hauts immeubles. Une ville relâche donc un flux des stimulants : plus d’automobiles dans les rues et donc plus de densité de trafic accompagnés de plus des sentiers cyclistes et donc plus de confort de déplacement à vélo. Remarquez : une géographie concrète de trafic routier et des sentiers cyclistes, en vue d’oiseau et aussi en une vue mathématique probabiliste, c’est comme un nuage d’infrastructure qui se superpose à un nuage des personnes en mouvement.

Les habitants répondent sélectivement à ce flux des stimulants en accomplissant un changement progressif dans leurs styles de vie. Voilà donc qu’une fois de plus je réfléchis sur le concept d’intelligence collective et je suis de plus en plus enclin à la définir selon les grandes lignes de la théorie d’essaim. Consultez « Ensuite, mon perceptron réfléchit » ou bien « Joseph et le perceptron » pour en savoir plus sur cette théorie. Je définis donc l’intelligence collective comme l’action collective coordonnée par la production et dissémination d’un agent systémique similaire à une hormone, qui transmet l’information d’une façon semi-visée, où le destinataire de l’information est défini par la compatibilité de ses facultés perceptives avec les propriétés de l’agent systémique-même. Tout membre de la société qui possède les caractéristiques requises peut « lire » l’information transmise par l’agent systémique. Les marchés financiers me viennent à l’esprit comme l’exemple les plus illustratif d’un tel mécanisme, mais nous pouvons chercher cette composante « hormonale » dans tout comportement social. Tenez, le mariage. Dans notre comportement conjugal il peut y avoir des composantes – des petites séquences comportementales récurrentes – dont la fonction est de communiquer quelque chose à notre environnement social au sens large et ainsi provoquer certains comportements chez des personnes dont nous ne savons rien.

Je reviens vers de sujets un peu moins compliqués que le mariage, donc vers le marché de l’énergie. Je me dis que si je veux étudier ce marché comme un cas d’intelligence collective, il faut que j’identifie un ou plusieurs agents systémiques. L’argent et les instruments financiers sont, une fois de plus, des candidats évidents. Il peut y en avoir d’autres. Voilà que je peux esquisser l’utilité pratique de ma recherche sur l’application de l’intelligence artificielle pour simuler l’intelligence collective. Le truc le plus évident qui me vient à l’esprit c’est la simulation des politiques climatiques. Tenez, par exemple l’idée de ces chercheurs des États-Unis, surtout du côté de Stanford University, en ce qui concerne une capture profitable du carbone (Sanchez et al. 2018[3] ; Jackson et al. 2019[4]). Jackson et al prennent un angle original. Ils assument que l’humanité produit du dioxyde de carbone et du méthane, qui sont tous les deux des gaz à effet de serre, seulement le méthane, ça serre 84 fois plus que le dioxyde de carbone. Si on convertit le méthane en dioxyde de carbone, on change un agent nocif plus puissant en un agent beaucoup plus faible. Toujours ça de gagné et en plus, Jackson et al déclarent d’avoir mis au point une méthode profitable de capter le méthane produit dans l’élevage des bovins et le transformer en dioxyde de carbone, à travers l’utilisation de la zéolithe. La zéolithe est une structure cristalline rigide d’aluminosilicate, avec des cations et des molécules d’eau dans les espaces libres. Le méthane généré dans l’élevage est pompé, à travers un système des ventilateurs et des grandes plaques poreuses de zéolithe. La zéolithe agit comme un filtre, qui « casse » les molécules de méthane des molécules de dioxyde de carbone.

Jackson et al suggèrent que leur méthode peut être exploitée à profit. Il y a un petit « mais » : à profit veut dire « à condition » est la condition c’est un marché des compensations carbone où le prix d’une tonne serait d’au moins $500. Je jette un coup d’œil sur le marché des compensations carbone tel qu’il est maintenant, selon le rapport publié par la Banque Mondiale : « State and Trends of Carbon Pricing 2018 ». Le marché se développe assez vite. En 2005, toutes les initiatives des compensations carbone dans le monde correspondaient à environ 4% de l’émission totale des gaz de serre. En 2018, ça faisait déjà quelques 14%, avec près de 20% à espérer en 2020. Seulement côté prix, le max des max, soit l’impôt Suédois sur les émissions, ça faisait $139 par tonne. La médiane des prix semble être entre $20 et $25. Très loin des $500 par tonne dont la méthode de Jackson et al a besoin pour être profitable.

Sanchez et al (2018) prennent une approche différente. Ils se concentrent sur des technologies – ou plutôt des ensembles complexes des technologies dans des industries mutuellement intégrées – qui rendent possible la vente du CO2 produit dans l’une de ces industries à l’autre. Le marché industriel du dioxyde de carbone – par exemple dans la production de la bière – est estimé à quelques 80 tonnes par an de CO2 liquide. Pas vraiment énorme – une centaine des cyclistes reconvertis comme moi font l’affaire – mais c’est toujours quelque chose de gagné.           

Ces idées que je viens de mentionner peuvent un jour se composer en des politiques publiques et alors il sera question de leur efficacité tout comme à présent nous nous posons des questions sur l’efficacité des soi-disant « politiques climatiques ». Vue mathématiquement, toute politique est un ensemble des variables, structurées en des résultats espérés d’une part et les outils ainsi que des déterminantes externes d’autre part. Cette perspective rend possible l’expression des politiques comme algorithmes d’intelligence artificielle. Les résultats c’est ce que nous voulons avoir. Disons que ce que nous voulons est une efficience énergétique « EE » – donc le coefficient du PIB divisé par la quantité d’énergie consommée – plus grande de 20% du niveau présent. Nous savons qu’EE dépend d’un ensemble de « » facteurs, dont nous contrôlons certains pendant qu’il est raisonnable d’en considérer d’autres comme exogènes.

J’ai donc une équation dans le style : EE = f(x1, x2, …, xn). Dans ce que nous pouvons appeler calcul stochastique classique il est question de chercher une expression linéaire la plus précise possible de la fonction f(x1, x2, …, xn), soit quelque chose comme EE = a1*x1 + a2*x2 + … + an*xn. Cette approche sert à déterminer quelle serait la valeur la plus probable d’EE avec un vecteur donné des conditions (x1, x2, …, xn). Cette tendance centrale est basée sur la loi de Vue sous un autre angle, la même politique peut s’exprimer comme un ensemble de plusieurs états hypothétiques et équiprobables de nature, donc plusieurs configurations probables de (x1, x2, …, xn) qui pourraient accompagner cette efficience énergétique désirée d’EE(t1) = 1,2*EE(t0). C’est alors que l’intelligence artificielle peut servir (consultez, par exemple « Existence intelligente et pas tout à fait rationnelle »)

Je me demande comment interpréter ces phénomènes et mon esprit s’aventure dans une région adjacente : la bouffe. Pardon, je voulais dire : l’agriculture. Il y a une différence nette entre l’Europe Septentrionale et l’Europe Méridionale, en ce qui concerne l’agriculture. Par l’Europe Méridionale je comprends surtout les grandes péninsules méditerranéennes : l’Ibérique, l’Apennine et le Péloponnèse. L’Europe du Nord, c’est tout ce qui se trouve plus loin de la Méditerranée. Dans le Sud, il y a beaucoup moins de production animale et la production végétale est centrée sur les fruits, avec relativement peu de plantes céréalières et peu des légumes-racines (pommes de terre, betteraves etc.). Dans le Nord de l’Europe, c’est presque exactement l’inverse : l’agriculture est dominée par les céréales, les légumes-racine et la production animale.

Les céréales et les légumes-racines, ça pousse vite. Je peux décider pratiquement d’année en année de l’utilisation exacte d’un champ donné. Les betteraves ou le blé, je peux les déplacer d’un champ à l’autre, d’année en année, presque sans encombre. Qui plus est, dans l’agriculture européenne traditionnelle du Nord, c’est ce qu’on était supposé de faire : de la rotation des cultures, appelée aussi « système d’assolement ». En revanche, les arbres fruitiers, ça pousse lentement. Il faut attendre des années avant qu’une plantation nouvelle soit mûre pour la production. Il est hors de question de déplacer des plantations fruitières d’une saison agriculturale à l’autre. Le modèle du Nord donne donc plus de flexibilité en termes d’aménagement du sol arable. Cette flexibilité va plus loin. La récolte des céréales, ça peut se diviser d’une façon élastique entre plusieurs applications : tant pour la consommation courante humaine, tant pour consommation humaine future, tant pour le fourrage et tant pour le semis l’année prochaine. Pour les légumes-racines, c’est un peu plus compliqué. Pour les patates, la meilleure solution c’est de replanter une pomme de terre déjà récoltée : elle sera plus prévisible.

Pour les carottes, il faut récolter les graines séparément et les replanter après. En tout, les cultures végétales du Nord, ça se conserve bien et ça se rend à des utilisations multiples.

En revanche, dans le Sud et ses cultures fruitières dominantes, c’est différent. Les fruits, avec l’exception des très succulents – comme les citrouilles ou les courges – ça se conserve mal hors d’une chambre froide et c’est l’une des raisons pourquoi il est problématique de nourrir des animaux de ferme avec. Voilà le point suivant : le Nord de l’Europe, ça abonde en élevage animal et donc en protéines et graisses animales. Tous les deux sont très nutritifs et en plus, la graisse animale, ça conserve bien les protéines animales. Eh oui, c’est la raison d’être du saucisson : les acides gras saturés, puisqu’ils sont saturés et donc dépourvus des liens chimiques libres, fonctionnent comme un ralentisseur des réactions chimiques. Un saucisson c’est de la viande (protéines) enveloppée dans de la graisse animale, qui empêche lesdites protéines de s’engager dans des liaisons douteuses avec l’oxygène.

En plus des protéines et de la graisse, les animaux de ferme, ils chient partout et donc ils engraissent. Les bactéries intestinales de la vache, ainsi que ses enzymes digestifs, travaillent pour le bien commun de la vache, de l’agriculteur et des cultures végétales. Une betterave moyenne, ça a tout intérêt à vivre à proximité d’une vache plutôt que de choisir une carrière solo. Voilà donc une chaîne intéressante : l’agriculture végétale dominée par les céréales et les légumes-racines favorise l’agriculture animale poussée qui, à son tour, favorise des cultures végétales à croissance rapide et à hautes exigences nutritives en termes de sol, donc des céréales et des légumes-racines etc. L’agriculture végétale du Sud, dominée par les arbres fruitiers, reste largement indépendante de l’agriculture animale. Cette dernière, dans le Sud, se concentre sur les chèvres et les moutons, qui ont besoin surtout des pâturages naturels.

En termes de productivité nutritive, le modèle du Nord bat celui du Sud par plusieurs longueurs. Ces deux modèles différents sont liés à deux géographies différentes. Le Nord de l’Europe est plus plat, plus froid, plus humide et doté des sols plus riches que le Sud. Plus de bouffe veut dire plus de monde par kilomètre carré, plus d’industrie, plus de trafic routier et tout ça, pris ensemble avec l’élevage intensif, veut dire plus de pollution par nitrogène. Cette dernière a une propriété intéressante : elle agit comme de l’engraissage permanent. Comme la pollution par nitrogène n’est pas vraiment contrôlée, cet engraissage involontaire va surtout aux espèces végétales qui ont le plus de potentiel de captage : les arbres. Récemment, j’ai eu une discussion avec un chercheur de l’Université Agriculturale de Krakow, Pologne, qui m’a carrément assommé avec le fait suivant : dû à la pollution par nitrogène, en Pologne, on a chaque année un surplus d’environ 30 millions de mètres cubes d’arbres vivants et on ne sait pas vraiment quoi en faire. Comme nous avons des sécheresses épisodiques de plus en plus fréquentes, ce surplus d’arbres a un effet pervers : les arbres sont aussi les plus efficaces à capter l’eau et durant une sécheresse ils battent toutes les autres plantes à cette discipline.  

Le système agricultural du Nord, à travers une chaîne causale étrange, contribue à reconstruire ce que le Nord a toujours eu tendance à surexploiter : les forêts. Une hypothèse folle germe dans mon esprit. Durant le XVIIIème et la première moitié du XIXème siècle, nos ancêtres Européens avaient gravement épuisé la substance forestière du continent. À partir de la seconde moitié du XIXème siècle, ils avaient commencé à exploiter de plus en plus les carburants fossiles et donc à produire de plus en plus de pollution locale en dioxyde de nitrogène. Par conséquent, ils avaient entamé un processus qui, des décennies plus tard, contribue à reconstruire la masse forestière du continent. Est-il concevable que notre aventure avec les carburants fossiles est une action collectivement intelligente visant à reconstruire les forêts ? Fou, n’est-ce pas ? Oui, bien sûr, par la même occasion, nous avons pompé des tonnes de carbone dans l’atmosphère de la planète, mais que puis-je vous dire : être intelligent ne veut pas nécessairement dire être vraiment prévoyant.

Quelles analogies entre ces modèles d’agriculture et les systèmes énergétiques, tels que je les ai passés en revue dans « Lean, climbing trends » ? Dans les deux cas, il y a une composante de croissance plus ou moins stable – plus de kilocalories par jour par personne, ainsi que plus de personnes qui mangent à leur faim dans le cas de l’agriculture, plus de kilogrammes d’équivalent pétrole par année par personne et plus de personnes avec accès à l’électricité dans le cas de l’énergie – accompagnée par des ensembles hétérogènes d’essais et erreurs côté production. Ces essais et erreurs semblent partager une caractéristique commune : ils forment des bases productives complexes. Un système énergétique concentré exclusivement sur une seule source d’énergie, par exemple que du photovoltaïque, semble tout aussi déséquilibré qu’un système agricultural qui ne cultive qu’une seule espèce végétale ou animale, comme que du mouton ou que du maïs. 

Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ? Vous pouvez me contacter à travers la boîte électronique de ce blog : goodscience@discoversocialsciences.com .


[1] https://data.worldbank.org/indicator/en.atm.co2e.pc dernier accès 26 Mars 2019

[2] https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions dernier accès 26 Mars 2019

[3] Sanchez, D. L., Johnson, N., McCoy, S. T., Turner, P. A., & Mach, K. J. (2018). Near-term deployment of carbon capture and sequestration from biorefineries in the United States. Proceedings of the National Academy of Sciences, 115(19), 4875-4880.

[4] R. B. Jackson et al. Methane removal and atmospheric restoration, Nature Sustainability (2019). DOI: 10.1038/s41893-019-0299-x

Existence intelligente et pas tout à fait rationnelle

Mon éditorial sur You Tube

Je continue avec le sujet de l’intelligence artificielle. Je développe sur le contenu de ma dernière mise à jour en anglais : « Thinking Poisson, or ‘WTF are the other folks doing?’ ». Je veux bâtir un raisonnement cohérent en ce qui concerne le bien-fondé et la méthode d’utiliser un réseau neuronal comme outil de prédiction dans les sciences sociales. Je sens que pour le faire j’ai besoin de prendre du recul et d’articuler clairement les sources de ma fascination avec les réseaux neuronaux. Je me souviens la première fois que j’avais utilisé, d’une façon encore très maladroite, un algorithme très simple de réseau neuronal (regardez « Ce petit train-train des petits signaux locaux d’inquiétude »). Ce qui m’avait fasciné, à l’époque, c’était la possibilité de regarder, de l’extérieur, une chose – une chose logique – apprendre. C’était comme si j’observais quelqu’un qui trouve son chemin à tâtons avec les yeux bandés, seulement ce quelqu’un était une séquence de 6 équations.

Il y a deux ans, j’ai présenté, dans une conférence, quelques preuves empiriques que la civilisation humaine a pour trait essentiel de maximiser l’absorption d’énergie de l’environnement. En fait, les changements technologiques de notre civilisation depuis 1960 ont pour effet d’accroître ladite absorption d’énergie. C’est l’un des sentiers intellectuels qui me passionnent. Lorsque je réfléchis sur les différentes manifestations de vie biologique, toute espèce maximise son absorption d’énergie. Nous, les humains, ne faisons pas exception à cette règle. Dans un autre article, j’ai présenté une application créative de la bonne vieille fonction de production – telle que vous pouvez la trouver dans l’article de Charles Cobb et Paul Douglas – au phénomène d’adaptation des sociétés humaines à leur environnements locaux, vu la quantité d’énergie et d’alimentation disponible. La conclusion générale que je tire de la recherche présentée dans ces deux articles est que l’existence des sociétés humaines est une histoire d’apprentissage intelligent, quoi qu’imparfaitement rationnel, à plusieurs niveaux. Pas vraiment original, vous direz. Oui, pas très original, mais ça donne de l’inspiration et ça excite ma curiosité.

Les histoires, ça se déroule. Je suis curieux où est-ce que cette existence intelligente et pas tout à fait rationnelle peut bien nous mener. C’est logique. Je suis chercheur dans les sciences de société et j’essaie de prédire, encore et encore, comme je reçois de l’information nouvelle, quelle forme va prendre la société dans l’avenir. Comment allons-nous adapter aux changements climatiques ? Comment pouvons-nous arrêter ou inverser ces changements ? Comment nous comporterons-nous, en Europe, si une pénurie alimentaire à l’échelle continentale survient ? Quelle va être la loi de demain ? Va-t-elle punir toute offense verbale à la sensibilité de quiconque ? La loi va-t-elle règlementer l’accès à l’eau potable ? Comment voterons-nous dans les élections parlementaires, dans 100 ans ? Y-aura-t-il des élections parlementaires ?

Autant des questions qui provoquent deux types d’attitude. « Qui sait ? Il y a tellement de variables en jeu qu’il est impossible de dire quoi que ce soit de ne serait-ce que moyennement raisonnable » est la première. « Qui sait ? Essayons de formuler des hypothèses, pour commencer. Les hypothèses, ça donne un point de départ. Ensuite, nous pouvons évaluer l’information nouvelle, que nous gagnerons dans l’avenir, en vue de ces hypothèses et comprendre un peu plus de ce qui se passe ». Ça, c’est la deuxième approche possible et moi, j’y souscris. Je suis chercheur, la science est ma passion, je suis curieux et je préfère savoir plutôt qu’ignorer.

Ça fait pratiquement un an que je m’efforce de mettre au point un concept d’entreprise financière que j’ai baptisé EneFin. En général, il s’agit de stimuler le développement des nouvelles sources d’énergie – surtout des petites installations locales basés sur les renouvelables – à travers un mécanisme financier qui combine une structure coopérative avec des solutions typiquement capitalistes, un peu comme dans le financement participatif type « crowdfunding ». Il y a quelque chose d’étrange dans cette idée, ou plutôt dans mes tentatives de la développer. À première vue, ça semble attrayant dans sa simplicité. Lorsque je m’y prends à décrire et développer cette idée, soit comme un business plan soit comme un article scientifique, je bute contre… Voilà, je ne sais pas exactement contre quoi. Il y a comme un blocage dans mon cerveau. Comme j’essaie de comprendre la nature de ce blocage, ça semble être quelque chose comme de la complexité résiduelle. C’est comme si une partie de mon intellect me disait, encore et encore : « Ce truc est plus complexe que tu crois. Tu n’as pas découvert toutes les cartes de ce jeu. Il est trop tôt pour présenter ça comme idée toute faite. Il faut que tu continues à chercher et découvrir, avant de présenter ».

EneFin est un concept essentiellement financier. La finance, ça tend à marcher en boucle de rétroaction : les phénomènes qui, juste un instant avant, étaient la cause et la force motrice de quelque chose, deviennent l’effet du même quelque chose. C’est l’une des raisons pourquoi les méthodes stochastiques classiques, comme la régression linéaire, donnent des résultats très insatisfaisants en ce qui concerne la prédiction des marchés financiers. La méthode stochastique a pour but de trouver une fonction mathématique qui donne une représentation mathématiquement cohérente des données empiriques – une fonction – avec aussi petite erreur type que possible. La prédiction strictement dite consiste à projeter cette fonction dans un futur possible et incertain. La qualité de prédiction se juge, en fait, après coup, donc lorsque le futur de jadis est devenu le passé, ne serait-ce qu’immédiat, du présent. Il y a une assomption profondément cachée dans cette méthode : c’est l’assomption que nous savons tout ce qu’il y a à savoir.

La méthode stochastique requiert de dire ouvertement que l’échantillon des données empiriques que j’utilise pour tracer une fonction est un échantillon représentatif. Suivant la logique de de Moivre – Laplace, mon échantillon a de la valeur stochastique seulement lorsque sa moyenne arithmétique est identique à celle de la moyenne à observer dans la réalité en général ou bien elle est suffisamment proche de cette moyenne réelle pour que la différence soit insignifiante. Dire que mon observation de la réalité est représentative de cette réalité, ça crée une perspective cognitive spéciale, ou je prétends de savoir tout ce qu’il est nécessaire de savoir sur le monde qui m’entoure.

Si vous travaillez sur un projet et quelqu’un vous dit « Va dans la direction A, je sais parfaitement que j’ai raison », vous répondrez, probablement, « Avec tout mon respect, non, tu ne peux pas savoir à coup sûr si tu as raison. La réalité, ça change et ça surprend ». Voilà le talon d’Achille de la méthode stochastique. Bien qu’officiellement différente du bon vieux déterminisme, elle en garde certaines caractéristiques. Avec tous ses avantages indéniables, elle est très exposée à l’erreur d’observation incomplète.

Il y a cette blague à propos des sciences économiques, qu’elles sont l’art de formuler des pronostics qui ne tiennent pas. Cruelle et exagérée, la blague, néanmoins fréquemment vraie. C’est probablement pour ça qu’un créneau légèrement différent s’est développé dans les sciences sociales, celui qui puise des sciences physiques et qui utilise des modèles théoriques comme le mouvement Brownien ou bien le mouvement d’Itô . Dans cette approche, la fonction des données empiriques inclue explicitement une composante de changement aléatoire.

Un réseau neuronal va dans une direction encore un peu différente. Au lieu d’assembler toutes les observations empiriques et en tirer une fonction commune, un réseau neuronal expérimente avec des petits sous-ensembles de l’échantillon complet. Après chaque expérience, le réseau teste sa capacité d’obtenir le résultat égal à une valeur de référence. Le résultat de ce test est ensuite utilisé comme information additionnelle dans des expériences ultérieures. L’intelligence artificielle connaît le succès qu’elle connaît parce que savons que certaines séquences des fonctions mathématiques ont la capacité d’optimiser des fonctions réelles, par exemple le fonctionnement d’un robot de nettoyage des planchers.

Si une séquence d’actions possède la capacité de s’optimiser elle-même, elle se comporte comme l’intelligence d’un organisme vivant : elle apprend. Voilà la méthode dont j’ai besoin pour travailler à fond mon idée de solution financière pour les énergies renouvelables. Le financier, ça contient des multiples boucles de rétroaction entre les variables en jeu, qui sont un gros problème pour les modèles stochastiques. Pour un réseau neuronal, les boucles de rétroaction, c’est précisément ce que l’intelligence artificielle du réseau est faite pour.

Par ailleurs, voilà que j’ai trouvé un article intéressant sur la méthodologie d’utilisation des réseaux neuronaux comme outils de prédiction alternatifs ou complémentaires vis-à-vis les modèles stochastiques. Olawoyin et Chen (2018[1]) discutent la valeur prédictive des plusieurs architectures possibles d’un perceptron à couches multiples. La valeur prédictive est évaluée en appliquant les perceptrons, d’une part, et un modèle ARIMA d’autre part à la prédiction des mêmes variables dans le même échantillon des données empiriques. Le perceptron à couches multiples se débrouille mieux que le modèle stochastique, quelles que soient les conditions exactes de l’expérience. Olawoyin et Chen trouvent deux trucs intéressants à propos de l’architecture du réseau neuronal. Premièrement, le perceptron basé sur la tangente hyperbolique comme fonction d’activation neuronale est généralement plus précis dans sa prédiction que celui basé sur la fonction sigmoïde. Deuxièmement, la multiplication des couches de neurones dans le perceptron ne se traduit pas directement en sa valeur prédictive. Chez Olawoyin et Chen, le réseau à 3 couches semble se débrouiller généralement mieux que celui à 4 couches.

Il est peut-être bon que j’explique cette histoire des couches. Dans un réseau neuronal artificiel, un neurone est une fonction mathématique avec une tâche précise à effectuer. Attribuer des coefficients aléatoires de pondération aux variables d’entrée est une fonction distincte du calcul de la variable de résultat à travers une fonction d’activation neuronale. J’ai donc deux neurones distincts : un qui attribue les coefficients aléatoires et un autre qui calcule la fonction d’activation. Logiquement, ce dernier a besoin des valeurs crées par le premier, donc l’attribution des coefficients aléatoires est la couche neuronale précédente par rapport au calcul de la fonction d’activation, qui est donc situé dans la couche suivante. De manière générale, si l’équation A requiert le résultat de l’équation B, l’équation B sera dans la couche précédente et l’équation A trouvera son expression dans la couche suivante. C’est comme dans un cerveau : pour contempler la beauté d’un tableau de Cézanne j’ai besoin de le voir, donc les neurones engagés directement dans la vision sont dans une couche supérieure et les neurones responsables des gloussements d’admiration font la couche suivante.

Pourquoi parler des couches plutôt que des neurones singuliers ? C’est une découverte que même moi, un néophyte à peine initié aux fondements des réseaux neuronaux, je comprends déjà : lorsque je place des neurones multiples dans la même couche fonctionnelle du réseau, je peux les mettre en compétition, c’est-à-dire les neurones de la couche suivante peuvent choisir entre les résultats différents apportés par les neurones distincts de la couche précédente. J’ai commencé à tester ce truc dans « Surpopulation sauvage ou compétition aux États-Unis ». Par ailleurs, j’avais alors découvert à peu près la même chose qu’Olawoyin et Chen (2018) présentent dans leur article : plus de complexité dans l’architecture d’un réseau neuronal crée plutôt plus de possibilités que plus de précision prédictive. Quand il s’agit de prédiction strictement dite, plus simple le réseau plus de précision il donne. En revanche, lorsqu’il est question de formuler des hypothèses alternatives précises, plus de complexité élargit le répertoire des comportements possibles du perceptron et donne plus d’envergure dans la description des états alternatifs de la même situation.  

Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ? Vous pouvez me contacter à travers la boîte électronique de ce blog : goodscience@discoversocialsciences.com .


[1] Olawoyin, A., & Chen, Y. (2018). Predicting the Future with Artificial Neural Network. Procedia Computer Science, 140, 383-392.

Deux intelligences alternatives

Mon éditorial sur You Tube

Me voilà à nouveau avec de l’énergie. Mon énergie à moi, bien sûr, mais aussi le sujet de l’énergie. Je donne satisfaction à mes trois obsessions scientifiques. Une, les solutions financières pour encourager la transition vers les énergies renouvelables. Deux, le lien entre les marchés financiers et le changement technologique. Trois, application de l’intelligence artificielle à l’étude de l’intelligence collective.

Dans ma dernière mise à jour en anglais – « We, the average national economy. Research and case study in finance » – j’ai commencé à esquisser la direction de ma recherche. J’ai plus ou moins repris le chemin analytique déjà signalé dans « Surpopulation sauvage ou compétition aux États-Unis » et je l’ai élargi à un échantillon plus grand de 56 pays. Apparemment, la croissance de l’efficience énergétique dans l’économie mondiale, de $8,08 par kilogramme d’équivalent pétrole en 1990 jusqu’à $10,76 en 2014, était accompagnée d’une accumulation presque équivalente en magnitude de capital, aussi bien d’actifs fixes que des soldes monétaires. Le truc intéressant c’est que ces deux composantes d’actifs du bilan de l’économie mondiale semblent garder une proportion plus ou moins constante l’une vis-à-vis de l’autre. En d’autres mots, un système complexe qui, dans ma base de données utilisée pour cette recherche, se compose de 56 pays, garde une liquidité plus ou moins constante tout en accumulant du capital et en accroissant son efficience énergétique.

Ça a tout l’air d’une intelligence collective : un système qui n’a aucune chance d’avoir un cerveau central et qui néanmoins se comporte comme un organisme. Il y a d’autre recherche qui en quelque sorte corrobore cette approche. Il y a ce modèle appelé MUSIASEM (Andreoni 2017[1] ; Velasco-Fernández et al 2018[2]) qui fournit une preuve empirique convaincante qu’en ce qui concerne l’énergie et l’efficience de son utilisation, l’économie mondiale se comporte comme un métabolisme adaptatif, dont l’adaptation se manifeste, entre autres, par un réarrangement géographique des moyens de production.

Je retourne donc, avec la persévérance d’un ivrogne qui essaie d’ouvrir la mauvaise porte d’entrée avec la bonne clé, au sujet de l’intelligence artificielle.  Je viens d’expérimenter un peu avec le réseau neuronal que j’utilise dans ce créneau spécifique de recherche et voilà qu’une fois de plus, cette chose m’a surpris. Je vous donne ici un compte rendu sélectif de ces surprises. Pour une description détaillée de la façon dont marche ce réseau neuronal précis, vous pouvez vous référer à « Surpopulation sauvage ou compétition aux États-Unis ». En passant du cas des États-Unis à l’échantillon général de plusieurs pays, j’ai juste ajouté une variable de plus, que j’avais déjà utilisé dans le passé (consultez, par exemple « Deux lions de montagne, un bison mort et moi ») : le déficit alimentaire par personne. C’est une variable des plus structurelles : elle est très idiosyncratique pays par pays, tout en restant très stable dans le temps. Immatriculation idéale d’un pays. D’autre part, moi, je suis ce chemin de découverte où j’assume que la nourriture, le pétrole et l’électricité se joignent, à un certain niveau, comme des manifestations différentes de la capacité de notre espèce de transformer l’énergie accessible dans notre environnement.

Alors, les surprises. Jusqu’alors, lorsque je travaillais avec ce réseau neuronal, il marchait à chaque fois. Je veux dire qu’il produisait un résultat dans chaque cas de figure, quoi que je lui impose comme conditions d’apprentissage. D’accord, ces résultats étaient parfois absurdes, mais il y en avait, des résultats. Dans ce cas précis, le réseau neuronal marche juste sous certaines conditions. Il coince souvent, c’est-à-dire il rend une erreur générale du type « NOMBRE ! », lorsque la magnitude des variables atteint des valeurs comme 40 ou – 40, donc lorsque les fonctions d’activation neurale s’affolent, puisqu’elles sont essentiellement faites à procéder avec des valeurs standardisées entre 0 et 1 (entre -1 et 1 pour la hyper-tangentielle). C’est du nouveau et moi, j’aime bien du nouveau. J’aime bien comprendre.

Alors, j’essaie de comprendre. Qu’est-ce qui a changé dans les conditions de départ, par rapport aux applications précédentes de ce même réseau neuronal ? Ce qui a changé très certainement c’est la quantité et la complexité des données empiriques originelles, donc de ce qui constitue le matériel primaire d’apprentissage. Dans ce cas précis, je donne à mon réseau neuronal N = 1228 cas « pays réel – année donnée ». Auparavant, je lui donnais entre 20 et 25 de telles incidences. J’ai envie de rire. De moi-même, je veux dire. C’est tellement évident ! Lorsque j’apprends quelque chose, la façon de le faire dépend de la complexité des informations d’entrée. Plus ces informations sont riches et complexes, plus de finesse je dois démontrer dans mon apprentissage. Apprendre à changer un tuyau sous mon levier de cuisine est simple. Apprendre la plomberie en général, y compris la méthode de changer une valve à gaz, est une tâche plus difficile, qui requiert une approche différente.

J’utilise un réseau neuronal pour simuler le comportement de l’intelligence collective d’une société. J’assume que les valeurs des variables empiriques représentent autant d’états différents et temporaires des processus distincts de changement social. La simulation d’intelligence collective, telle que la fait mon réseau neuronal, commence avec une assomption importante : toutes les variables pris en compte sont divisées en deux catégories, où une variable est considérée comme celle de résultat et toutes les autres comme celles d’entrée. J’assume que l’entité intelligente est orientée sur l’optimisation de la variable de résultat et les variables d’entrée sont instrumentales à cet effet. J’implique une fonction vitale dans mon entité intelligente. Je sais que les réseaux neuronaux beaucoup plus avancés que le mien sont capables de définir cette fonction par eux-mêmes et j’ai même quelques idées comment inclure cette composante dans mon propre réseau. Quoi qu’il en soit, une fonction vitale est quelque chose à avoir dans un réseau neuronal. Sans elle, à quoi bon ? Je veux dire, s’il n’y a rien à achever, la vie perd son sens et l’intelligence se réduit à la capacité de commander un autre verre et à consulter Twitter pour la millionième fois.

Lorsque je considère l’intelligence collective d’une société réelle et je définis sa fonction vitale de la façon décrite ci-dessus, c’est une simplification grossière. Comme j’approche cette fonction vitale sous un angle purement mathématique, ça a plus de sens. La variable de résultat est celle à laquelle mon réseau neuronal touche relativement le moins : il la modifie beaucoup moins que les variables d’entrée. La distinction entre la variable de résultat et les variables d’entrée signifie qu’une variable dans le lot – celle de résultat – ancre la simulation d’intelligence collective dans un contexte similaire à celui, connu à tous les économistes, de caeteris paribus, ou « autres facteurs constants ». Je peux donc orienter ma simulation de façon à montrer les états possibles de réalité sociales sous des différentes ancres de résultat. Qu’est-ce qui se passe si j’ancre mon système social à un certain niveau d’efficience énergétique ? Comment l’état hypothétique de cette société, produit par le réseau neuronal, va changer avec une autre ancre de résultat ? Quelles différences de comportement produis-je sous des fonctions vitales différentes ?

Maintenant, question de langage. Le réseau neuronal parle nombres. Il comprend les données numériques et il communique des résultats numériques. En principe, le langage numérique des fonctions d’activation de base, celui du sigmoïde et la hyper-tangentielle, se limite aux valeurs numériques standardisées entre 0 et 1. En fait, la hyper-tangentielle est un peu plus polyglotte et comprend aussi du patois entre -1 et 0. Dans ma communication avec le réseau neuronal j’encontre donc deux défis linguistiques : celui de parler à cette chose en des nombres standardisés qui correspondent aussi étroitement que possible à la réalité, et celui de comprendre correctement les résultats numériques rendus par le réseau.

J’ai donc cette base de données, N = 1228 occurrences « pays < > année », et je traduis les valeurs empiriques dedans en des valeurs standardisées. La procédure de base, la plus simple, consiste à calculer le maximum observé pour chaque variable séparément et ensuite diviser chaque valeur empirique de cette variable par ledit maximum. Si je ne me trompe, ça s’appelle « dénomination ». Dans une approche plus élaborée, je peux standardiser sous la courbe de distribution normale. C’est ce que vous avez comme standardisation dans des logiciels statistiques. Il y a un petit problème avec les valeurs empiriques qui, après standardisation, sont égales rigoureusement à 0 ou 1. En théorie, il faudrait les transformer en des machins comme 0,001 ou 0,999. En fait, s’il n’y en a pas beaucoup, de ces « 0 » et ces « 1 » dans l’échantillon offert à mon réseau neuronal comme matériel d’apprentissage, je peux les ignorer.

La question de langage sur laquelle je me concentre maintenant est celle de compréhension de ce que le réseau neuronal rend comme résultat. Mathématiquement, ce résultat est égal à xf = xi + ∑e , où xf est la valeur finale crachée par le réseau, xi est la valeur initiale, et ∑e est la somme d’erreurs locales ajoutée à la valeur initiale après n rondes d’expérimentation. Supposons que je fais n = 3000 rondes d’expérimentation. Qu’est-ce qu’exactement ma valeur finale xf ? Est-ce la valeur obtenue dans la ronde no. 3000 ? C’est ce que j’assume souvent, mais il y a des « mais » contre cette approche. Premièrement, si les erreurs locales « e » accumulées par le réseau sont généralement positives, les valeurs xf obtenues dans cette dernière ronde sont d’habitude plus élevées que les initiales. Quelles contorsions que je fasse avec la standardisation, xf = max(xi ; xf) et inévitablement xf > xi.

Encore, ce n’est pas le plus dur des cas. Il y a des situations où les erreurs locales sont plutôt négatives que positives et après leur accumulation j’ai ∑e < 0 et xf = xi + ∑e < 0 également. Vachement embarrassant. Puis-je avoir une offre négative d’argent ou une efficience énergétique négative ?

Je peux faire une esquive élégante à travers le théorème de de Moivre – Laplace et assumer que dans un grand nombre des valeurs expérimentales rendues par le réseau neuronal la valeur espérée est leur moyenne arithmétique, soit xf = [∑(xi + ei)] / n. Élégant, certes, mais est-ce une interprétation valide du langage dont le réseau neuronal me parle ? L’intelligence artificielle est une forme d’intelligence. Ça peut créer de la signification et pas seulement adopter la signification que je lui impose. Est-ce que ça parle de Moivre – Laplace ? Allez savoir…

Bon, ça c’est de la philosophie. Temps de passer à l’expérimentation en tant que telle. Je reprends plus ou moins le perceptron décrit dans « Surpopulation sauvage ou compétition aux États-Unis » : une couche neuronale d’entrée et observation, une couche de combine (attribution des coefficients de pondération, ainsi que de fonctions d’adaptation locale aux données observées), une couche d’activation (deux fonctions parallèles : sigmoïde et hyper-tangentielle) et finalement une couche de sélection. Dans cette dernière, j’introduis deux mécanismes complexes et alternatifs de décision. Tous les deux assument qu’une intelligence collective humaine démontre deux tendances contradictoires. D’une part, nous sommes collectivement capables de nous ouvrir à du nouveau, donc de relâcher la cohérence mutuelle entre les variables qui nous représentent. D’autre part, nous avons une tolérance limitée à la dissonance cognitive. Au-delà de ce seuil de tolérance nous percevons le surplus du nouveau comme du mauvais et nous nous protégeons contre. Le premier mécanisme de sélection prend la moindre erreur des deux. Les deux neurones dans la couche d’activation produisent des activations concurrentes et le neurone de sélection, dans ce schéma-ci, choisit l’activation qui produit la moindre valeur absolue d’erreur. Pourquoi valeur absolue et non pas l’erreur en tant que telle ? Eh bien, l’erreur d’activation peut très bien être négative. Ça arrive tout le temps. Si j’ai une erreur négative et une positive, la moindre valeur des deux sera, arithmétiquement, l’erreur négative, même si son écart de la valeur d’activation est plus grand que celui de l’erreur positive. Moi, je veux minimiser l’écart et je le minimise dans l’instant. Je prends l’expérience qui me donne moins de dissonance cognitive dans l’instant.

 

Le deuxième mécanisme de sélection consiste à tirer la moyenne arithmétique des deux erreurs et de la diviser ensuite par un coefficient proportionnel au nombre ordinal de la ronde d’expérimentation. Cette division se fait uniquement dans les rondes d’expérimentation strictement dite, pas dans la phase d’apprentissage sur les données réelles. J’explique cette distinction dans un instant. Ce mécanisme de sélection correspond à une situation où nous, l’intelligence collective, sommes rationnels dans l’apprentissage à partir de l’expérience directe de réalité empirique – donc nous pondérons toute la réalité de façon uniforme – mais dès que ça vient à expérimentation pure, nous réduisons la dissonance cognitive dans le temps. Nous percevons l’expérience antérieure comme plus importante que l’expérience subséquente.

Le réseau neuronal travaille en deux étapes. D’abord, il observe les données empiriques, donc les N = 1228 occurrences « pays < > année » dans la base de données de départ. Il les observe activement : à partir de l’observation empirique n = 2 il ajoute l’erreur sélectionnée dans la ronde précédente aux valeurs standardisées des variables d’entrée et il touche pas à la variable de résultat. Après les 1228 rondes d’apprentissage le réseau passe à 3700 rondes d’expérimentation. Je ne sais pas pourquoi, mais j’aime arrondir le boulot total de mon perceptron à 5000 rondes au total. En tout cas, dans les 3700 rondes d’expérimentation, le réseau ajoute l’erreur de la ronde précédente aux variables d’entrée calculées dans la même ronde précédente.

En ce qui concerne le travail avec les variables d’entrée, le perceptron accumule l’expérience en forme d’une moyenne mouvante. Dans la première ronde d’expérimentation, le neurone d’observation dans la première couche du réseau tire la moyenne arithmétique des 1228 valeurs de la phase d’apprentissage et il y ajoute l’erreur sélectionnée pour propagation dans la dernière, 1228ième ronde d’apprentissage. Dans la deuxième ronde d’expérimentation, le perceptron tire la moyenne arithmétique des 1227 rondes d’apprentissage et de la première ronde d’expérimentation et il y ajoute l’erreur sélectionnée dans la première ronde d’expérimentation et ainsi de suite. La couche d’entrée du réseau est donc un peu conservative et perçoit les résultats d’expériences nouvelles à travers la valeur espérée, qui, à son tour, est construite sur la base du passé. Ça a l’air familier, n’est-ce pas ? En revanche, en ce qui concerne la variable de résultat, le perceptron est plus conservatif. Il tire la moyenne arithmétique des 1228 valeurs empiriques, comme valeur espérée, et il s’y tient. Encore une fois, je veux simuler une tendance à réduire la dissonance cognitive.

Côté langage, je teste deux manières d’écouter à ce que me dit mon perceptron. La première consiste à prendre, classiquement si j’ose dire, les valeurs standardisées produites par la dernière, 3700ième ronde expérimentale et les de-standardiser en les multipliant par les maximums enregistrés empiriquement dans la base de données de départ. Dans la deuxième méthode, je tire la moyenne arithmétique de toute la distribution de la variable donnée, donc valeurs empiriques et valeurs expérimentales prises ensemble. Je raisonne en termes du théorème de de Moivre – Laplace et j’assume que la signification d’un grand ensemble des nombres est la valeur espérée, soit la moyenne arithmétique.

En ce qui concerne mes variables, leur catalogue général est donné dans le tableau ci-dessous. Après le tableau, je continue avec la description.

Tableau 1

Code de la variable Description de la variable
Q/E PIB par kg d’équivalent pétrole d’énergie consommé (prix constants, 2011 PPP $) – VARIABLE DE RÉSULTAT
CK/PA Capital immobilisé moyen par une demande nationale de brevet (millions de 2011 PPP $, prix constants)
A/Q Amortissement agrégé d’actifs fixes comme % du PIB
PA/N Demandes nationales de brevet par 1 million d’habitants
M/Q Offre agrégée d’argent comme % du PIB
E/N Consommation finale d’énergie en kilogrammes d’équivalent pétrole par tête d’habitant
RE/E Consommation d’énergie renouvelable comme % de la consommation totale d’énergie
U/N Population urbaine comme % de la population totale
Q Produit Intérieur Brut (millions de 2011 PPP $, prix constants)
Q/N PIB par tête d’habitant (2011 PPP $, prix constants)
N Population
DA/N Déficit alimentaire par tête d’habitant (kcal par jour)

Je fais travailler mon réseau neuronal avec ces variables avec 4 fonctions vitales différentes, donc en mettant 4 variables différentes dans la catégorie de résultat à optimiser : le déficit alimentaire par personne, population urbaine comme % de la population totale, efficience énergétique de l’économie, et finalement les actifs fixes par une demande de brevet. En ce qui concerne l’importance que j’attache à cette dernière variable, vous pouvez consulter « My most fundamental piece of theory ». J’ai choisi les variables que je considère intuitivement comme structurelles. Intuitivement, j’ai dit.

Au départ, les moyennes arithmétiques de mes variables – donc leur valeurs statistiquement espérées – sont les suivantes :

Q/E = $8,72 par kg d’équivalent pétrole ;

CK/PA = $3 534,8 par demande de brevet ;

A/Q = 14,2% du PIB ;

PA/N = 158,9 demandes de brevet par 1 million d’habitants ;

M/Q = 74,6% du PIB en masse monétaire ;

E/N = 3007,3 kg d’équivalent pétrole par personne par an ;

DA/N = 26,4 kcal par personne par jour ;

RE/E = 16,05% de la consommation totale d’énergie ;

U/N = 69,7% de la population ;

Q = $1 120 874,23 mln ;

Q/N = $22 285,63 par tête d’habitant  ;

N = 89 965 651 personnes ;

Ça, c’est le point empirique de départ. C’est une société relativement opulente, quoi qu’avec des petits problèmes alimentaires, plutôt grande, moyennement avide d’énergie, et généralement moyenne, comme c’était à espérer. Deux variables font exception à cette tendance : le pourcentage de population urbaine et l’offre d’argent. L’urbanisation moyenne mondiale est à présent aux environs de 55%, pendant que notre échantillon se balance vers 70%. L’offre d’argent dans l’économie mondiale est couramment de presque 125% du PIB et notre échantillon fait gentiment 74,6%. Maintenant, allons voir ce que le réseau neuronal peut apprendre si sa fonction vitale est orientée sur un déficit alimentaire stable par personne par jour, donc DA/N est la variable de résultat. Tableaux no. 2 et 3, ci-dessous, présentent les résultats d’apprentissage, pendant que les Graphes 1 – 4, plus loin, donnent un aperçu de la manière dont le réseau apprend sous des conditions différentes.

Je commence par discuter la méta-variable de base : l’erreur locale du réseau. Graphes 1 et 2 donnent une idée de différence entre les deux stratégies d’apprentissage sous considération. L’apprentissage par la moindre erreur est paradoxal. Durant les 1228 rondes empiriques, il conduit effectivement à la réduction de l’erreur, comme tout gentil perceptron devrait le faire. Néanmoins, dès que le réseau passe à expérimenter avec lui-même, l’erreur croît à chaque ronde consécutive. Le réseau se balance de plus en plus entre des états alternatifs. Intéressant : lorsque le réseau est programmé pour choisir la moindre erreur, il génère de plus en plus d’erreur. En revanche, l’apprentissage par erreur moyenne décroissante – donc la stratégie qui reflète une tendance croissante à réduire la dissonance cognitive – ça marche de façon modèle. L’erreur dans la phase empirique est réduite à un niveau très bas et ensuite, dans la phase d’expérimentation pure, elle tend vers zéro.

Lorsque je passe à la fonction d’adaptation, donc à la distance Euclidienne moyenne entre les variables du réseau (Graphes 3 et 4) la différence entre les deux stratégies d’apprentissage est un peu moins prononcée, quoi que visible. Dans les deux cas, la cohésion interne du réseau change en deux phases bien distinctes. Aussi longtemps que le perceptron travaille avec les 1228 observations empiriques, sa cohésion oscille très fortement. Dès que ça passe à expérimenter avec soi-même, les oscillations s’éteignent, mais de deux façons différentes. Le perceptron qui choisit la moindre erreur et apprend uniformément dans le temps (Graphe 3) fixe sa cohésion interne à un niveau relativement bas et ensuite il accroît à nouveau l’amplitude d’oscillation. En revanche, le perceptron qui tire la moyenne de ses erreurs locales et démontre une résistance croissante aux informations nouvelles (Graphe 4) se tient très fermement au niveau de cohésion atteint vers la fin de la phase d’apprentissage sur les données empiriques.

Je vois ici deux intelligences différentes, qui représentent deux façons de représenter un phénomène bien connu, celui de résistance à la dissonance cognitive. Le perceptron qui apprend par la moindre erreur réduit sa dissonance sur le champ et localement, sans le faire à long terme. Celui qui apprend par l’erreur moyenne et la divise par le nombre ordinal de la ronde consécutive d’expérimentation agit différemment : il tolère plus d’erreur localement mais se ferme progressivement sur le long terme.

Dans la mesure où je les considère comme représentations d’une intelligence collective, j’y vois des analogies intéressantes à notre ordre social. Le perceptron qui apprend par la moindre erreur semble plus intelligent que celui qui tire l’erreur moyenne et se raidit à mesure d’apprendre. C’est comme si des controverses locales à propos des changements climatiques étaient plus fertiles en apprentissage qu’un système de savoir très codifié et rigide.

En ce qui concerne les résultats, les deux intelligences alternatives se comportent aussi de manière très différente. En général, l’intelligence qui choisit la moindre erreur locale mais s’en fout du passage de temps (Tableau 2) produit des valeurs plus élevées que celle qui tire l’erreur moyenne et développe le sentiment d’avoir appris tout ce qu’il y avait à apprendre (Tableau 3). En fait, la première ajoute à toutes les variables du perceptron, pendant que la deuxième les réduit toutes.

Je veux me pencher sur l’interprétation de ces nombres, donc sur la façon de comprendre ce que le réseau neuronal veut me dire. Les nombres du tableau 2 semblent vouloir dire que si nous – la civilisation – voulons accroître notre efficience énergétique, il nous faut accroître significativement la cadence de l’innovation. Je le vois surtout dans le pourcentage du PIB pris par l’amortissement d’actifs fixes : la variable A/Q. Plus ce pourcentage est élevé, plus rapide est la cadence de rotation des technologies. Pour avoir une efficience énergétique moyenne, comme civilisation, à un niveau à peine 50% plus élevé que maintenant, il nous faudrait accélérer la rotation des technologies d’à peu près 25%.

Il y a une variable collatérale à l’innovation, dans ma base de données : CK/PA ou le coefficient d’actifs fixes par une demande de brevet. C’est en quelque sorte le montant de capital qu’une invention moyenne peut se nourrir avec. Dans cette simulation avec le réseau neuronal vous pouvez voir que les différences de magnitude de CK/PA sont tellement grandes qu’elles en deviennent intéressantes. Le perceptron qui apprend avec la résistance croissante à l’information nouvelle donne des valeurs négatives de CK/PA, ce qui semble absurde. Absurde, peut-être, mais pourquoi ? C’est l’une de ces situations lorsque je me pose des questions de fond sur ce qu’est intelligence collective.

Tableau 2

Apprentissage par la moindre erreur, uniforme dans le temps
Valeurs de la 3700ième ronde expérimentale  

Valeurs des moyennes espérées

 

Q/E = $15,80 par kg d’équivalent pétrole ;

 

CK/PA = $78 989,68 par demande de brevet ;

 

A/Q = 25% du PIB ;

 

PA/N = 1 426,24 demandes de brevet par 1 million d’habitants;

 

M/Q = 167,49% du PIB en masse monétaire ;

 

E/N = 7 209,06 kg d’équivalent pétrole par personne par an ;

 

RE/E = 37,45% de consommation totale d’énergie en renouvelables ;

 

U/N = 115,88% ( ! ) de la population en villes ;

 

Q = $7 368 088,87 mln ;

 

Q/N = $63 437,19 par tête d’habitant ;

 

N = 553 540 602 personnes ;

 

Variable de résultat >> DA/N = 26,40 kcal par personne par jour

Q/E = $12,16 par kg d’équivalent pétrole ;

 

CK/PA = $42 171,01 par demande de brevet ;

 

A/Q = 19% du PIB ;

 

PA/N = 770,85 demandes de brevet par 1 million d’habitants ;

 

M/Q = 120,56% du PIB en masse monétaire ;

 

E/N = 5 039,16 kg d’équivalent pétrole par personne par an ;

 

RE/E = 25,34% de consommation totale d’énergie en renouvelables ;

 

U/N = 77,21% de la population totale en villes;

 

Q = $3 855 530,27 mln ;

 

Q/N = $41 288,52 par tête d’habitant ;

 

N = 295 288 302 personnes ;

 

Variable de résultat >> DA/N = 26,40 kcal par personne par jour

Tableau 3

Apprentissage par erreur moyenne décroissante à mesure des rondes d’expérimentation
Valeurs de la 3700ième ronde expérimentale  

Valeurs des moyennes espérées

 

Q/E = $7,41 par kg d’équivalent pétrole ;

 

CK/PA = ($2 228,03) par demande de brevet ;

 

A/Q = 11% du PIB ;

 

PA/N = 101,89 demandes de brevet par 1 mln d’habitants ;

 

M/Q = 71,93% du PIB en masse monétaire ;

 

E/N = 3 237,24 kg d’équivalent pétrole par personne par an ;

RE/E = 10,21% de la consommation totale d’énergie en renouvelables ;

 

U/N  = 65% de la population totale en villes ;

 

Q = $730 310,21 mln ;

 

Q/N = $25 095,49 par tête d’habitant ;

 

N = 15 716 495 personnes ;

 

Variable de résultat >> DA/N = 26,40 kcal par personne par jour ;

Q/E = $8,25 par kg d’équivalent pétrole ;

 

CK/PA = ($3 903,81) par demande de brevet ;

 

A/Q = 14% du PIB ;

 

PA/N = 101,78 demandes de brevet par 1 mln d’habitants ;

 

M/Q = 71,52% du PIB en masse monétaire ;

 

E/N = 3 397,75 kg d’équivalent pétrole par personne par an ;

 

RE/E = 12,64%  de la consommation totale d’énergie en renouvelables ;

 

U/N = 75,46% de la population totale en villes ;

 

Q = $615 711,51 mln  ;

 

Q/N = $24 965,23 par tête d’habitant ;

 

N = 2 784 733,90 personnes ;

 

Variable de résultat >> DA/N = 26,40 kcal par personne par jour ;

Graphe 1

Graphe 2

Graphe 3

Graphe 4

Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ?

[1] Andreoni, V. (2017). Energy Metabolism of 28 World Countries: A Multi-scale Integrated Analysis. Ecological Economics, 142, 56-69

[2] Velasco-Fernández, R., Giampietro, M., & Bukkens, S. G. (2018). Analyzing the energy performance of manufacturing across levels using the end-use matrix. Energy, 161, 559-572

Ce petit train-train des petits signaux locaux d’inquiétude

Mon éditorial sur You Tube

Dans ma dernière mise à jour en anglais, celle intitulée « Pardon my French, but the thing is really intelligent », j’ai commencé à travailler avec un algorithme tout simple de réseau neuronal. Tout simple veut dire six équations en tout. Mon but était d’observer chaque fonction logique de cet algorithme dans son application à des données réelles. Les données réelles en question c’est l’Australie et son efficience énergétique. Les détails de l’algorithme et les données empiriques testées sont spécifiées dans cette mise à jour en anglais. En gros, j’avais posé l’hypothèse implicite que ma variable de résultat est l’efficience énergétique de l’économie Australienne, mesurée avec le coefficient de Produit Intérieur Brut par kilogramme d’équivalent pétrole de consommation finale d’énergie. Cette variable est en quelque sorte la réaction produite par ce système nerveux hypothétique que les équations du réseau neuronal représentent de façon analytique. L’hypothèse sujette à l’examen est que cette réaction est produite par l’action de cinq variables d’entrée : la consommation d’énergie par tête d’habitant, le PIB par (probablement la même) tête d’habitant, le pourcentage de la population urbaine dans la population totale, et enfin la proportion entre, respectivement, l’amortissement agrégé d’actifs fixes et l’offre d’argent, comme numérateurs, et le Produit Intérieur Brut comme dénominateur.

Maintenant je me concentre sur la façon dont cet algorithme apprend. L’apprentissage se fait en trois pas essentiels. Tout d’abord, les données d’entrée sont transformées, à travers une double multiplication par des coefficients aléatoires de pondération. C’est l’équivalent de l’imagination. L’algorithme crée une distribution alternative des données d’entrée, comme une version imaginaire légèrement décalée de la réelle. Ensuite, sur la base de cette distribution alternative, une valeur espérée de la variable de résultat est calculée. Cette valeur espérée est calculée avec l’aide de la fonction sigmoïde Ω =1/(1+e-x), où le « x » est en fait une sommation des variables d’entrée dans cette version alternative, donc x1*w1 + x2*w2 + x3*w3 + x4*w4 + x5*w5, où les « w » sont ces coefficients de pondération. J’utilise le

Le truc intéressant à propos de la fonction sigmoïde est que dans la grande majorité des cas ça donne une sortie Ω = 1, avec une dérivée locale Ω’= 0. Mon « » réel est toujours plus grand que 1, donc cette prédiction est évidemment fausse. Elle génère une erreur locale E = y – Ω. Seulement, ce réseau neuronal fait de six équations assume que lorsque la prédiction Ω égale exactement 1, donc quand sa dérivée Ω’ égale exactement 0, c’est comme si rien ne se passait côté connaissance. Juste dans certains cas, avec une combinaison aléatoire des coefficients de pondération parmi plusieurs autres, Ω est très légèrement en-dessous de 1 et sa dérivée Ω’ est très légèrement plus grande que 0.

Le cas de Ω < 1 c’est comme si le neurone ne pouvait pas produire une réponse routinière. Si vous voulez, c’est comme le système nerveux ne pouvait pas recevoir la combinaison des stimuli qui l’autorise à signaler comme d’habitude. La dérivée locale Ω’, qui est normalement Ω’ = 0, prend alors la forme de Ω’ > 0. A ce point-ci, la dérivée Ω’ est interprétée de la façon qui est probablement la plus profonde et la plus philosophique, qu’Isaac Newton considérait comme le rôle cognitif le plus fondamental de la dérivée d’une fonction. La dérivée donne la mesure de vitesse de changement dans les phénomènes qui composent la réalité. Tout ce qui se passe se passe comme une fonction dérivée de la fonction sous-jacente de l’état des choses.

Alors, lorsque mon neurone produit Ω = 1 et Ω’ = 0, cette réponse neuronale, tout en étant évidemment fausse par rapport à mes données réelles y – dont ce Ω est supposé d’estimer la valeur espérée – est une réponse routinière et il n’y a pas de quoi faire un fromage. L’erreur locale E = y – Ω est donc considérée comme insignifiante, même si sa valeur arithmétique est substantielle. En revanche, lorsque le neurone produit une réponse très légèrement Ω < 1, c’est pas normal. Le neurone rend une dérivée Ω’ > 0, donc un signal d’inquiétude. Celui-ci est une raison pour considérer cette erreur locale particulière E = y – Ω comme significative. Le produit (y – Ω)*Ω’ est alors transmis dans la ronde consécutive d’itération comme un coefficient de plus, non-aléatoire cette fois-ci, qui modifié les données réelles d’entrée. Ces dernières, dans l’itération suivante de ces équations, prennent donc la forme x1*[w1+(y – Ω)*Ω’] + x2*[w2+(y – Ω)*Ω’] + x3*[w3+(y – Ω)*Ω’] + x4*[w4+(y – Ω)*Ω’] + x5*[w5+(y – Ω)*Ω’].

Je récapitule. Ce réseau neural tout simple produit donc deux phénomènes : une vision alternative de la réalité ainsi qu’une réaction d’inquiétude lorsque cette réalité alternative force le neurone à une réaction pas tout à fait comme espérée. L’apprentissage consiste à utiliser les signaux d’inquiétude comme matériel cognitif. Cette utilisation a une forme spécifique. C’est comme si moi, en face de quelque chose d’inhabituel et légèrement inquiétant, je prenais ce facteur de stress et produisais une vision de la réalité encore plus inquiétante.

Ça m’intrigue. Tout ce que j’ai appris jusqu’alors, en termes de psychologie, me dit que les êtres humains ont une tendance presque innée à réduire la dissonance cognitive. Ces équations-là font le contraire : elles amplifient les dissonances cognitives locales et les transmettent dans le processus d’apprentissage. Ceci me rend conscient de la distinction fondamentale entre deux attitudes vis-à-vis de l’inhabituel : la peur et l’apprentissage. La peur dit d’éviter à tout prix une autre exposition au facteur d’inquiétude. Si ce réseau neuronal avait peur de l’inhabituel, il éliminerait les cas de Ω’ > 0 de toute utilisation ultérieure. Alors mathématiquement, il n’apprendrait rien. Il convergerait vers une situation où toutes les réponses neuronales sont rigoureusement Ω = 1 et donc toutes les erreurs de jugement (y – Ω) sont ignorées, car avec Ω’ = 0, (y – Ω)*Ω’ = 0 aussi. Seulement, ce réseau fait le contraire : il prend ces cas de Ω’ > 0 et simule des situations où ces Ω’ > 0 modifient la réalité pour du bon.

Question : qu’est-ce que ça donne en pratique, avec le cas de l’Australie ? Est-ce que le fait de produire une vision alternative d’Australie génère de l’inquiétude et cette inquiétude, contribue-t-elle à produire des visions même plus alternatives ? Eh bien voilà, c’est justement la question que je m’avais posée et qui m’a poussé à faire quelque chose que les informaticiens considèrent comme une horreur d’insanité : au lieu de faire cet algorithme travailler en boucle jusqu’il produise une erreur minimale, j’avais simulé, dans un fichier Excel, des rondes consécutives d’itération « imagination >> réalité alternative >> erreur de jugement >> inquiétudes locales >> réalité encore plus alternative etc. ». Autrement dit, j’avais fait par moi-même ce qu’un algorithme aurait dû faire pour moi. J’avais produit trois distributions alternatives de ces coefficients initiaux de pondération, pour modifier les données réelles d’entrée. Ensuite, pour chacune de ces distributions alternatives, il m’eût suffi de patience pour faire six rondes d’itération surveillée d’équations qui composent ce réseau neuronal tout simple.

Pour chaque ronde d’itération surveillée, dans chacune de ces réalités alternatives, j’observais l’erreur cumulée – donc la somme des (y – Ω)*Ω’ générées pour par des incidents de Ω’ > 0 – ainsi que les années particulières, dans ma fenêtre générale d’observation 1990 – 2014, où ces incidents locaux Ω’ > 0 se produisent. Tableau 1, ci-dessous, rend compte ce cette expérience. Je développe ce raisonnement plus loin en-dessous :

Tableau 1 – Application d’algorithme de réseau neuronal aux données sur l’efficience énergétique de l’Australie

Distributions aléatoires des coefficients de pondération
Rondes consécutives Distribution  1 Distribution  2 Distribution  3
Ronde 1
Années avec erreur significative, pour apprentissage dans des rondes prochaines 1999; 2002; 2003; 2006 1990; 1994; 1998 – 99; 2009; 2012 – 13; 1990 – 91; 1996 – 97; 1999; 2001; 2007; 2009 – 11;
Erreur cumulative 5,53241E-09 7,0537E-05 0,000916694
Ronde 2
Années avec erreur significative, pour apprentissage dans des rondes prochaines 1992; 1993; 1999; 2002; 2006 1996; 1999; 2006; 2012 – 13; 1991 – 92; 1996; 2004; 2007; 2011;
Erreur cumulative 6,45047E-12 2,93896E-07 0,035447255
Ronde 3
Années avec erreur significative, pour apprentissage dans des rondes prochaines 1990; 1996; 1999; 2002; 2006 1991; 1997; 1999; 2010; 2012 – 14 1991; 1996; 1999; 2002 – 2004; 2007; 2009 – 2012;
Erreur cumulative 2,34651E-13 4,39246E-06 0,00056026
Ronde 4
Années avec erreur significative, pour apprentissage dans des rondes prochaines 1990 – 92; 1994 – 95; 1997; 2001 – 2002; 2006 – 2007; 2012 1990; 1992; 1996; 1999; 2012 – 13; 1990 – 91; 1994 – 96; 1999; 2007; 2009 – 11;
Erreur cumulative 0,000171883 0,000741233 6,27817E-05
Ronde 5
Années avec erreur significative, pour apprentissage dans des rondes prochaines 1993; 1999; 2002; 2003; 2006 1997; 1999; 2007; 2012 – 13; 1990 – 91; 1996; 2003; 2007 – 2009; 2011;
Erreur cumulative 3,46206E-05 0,000548987 0,001532496
Ronde 6
Années avec erreur significative, pour apprentissage dans des rondes prochaines 1991 – 94; 1996 – 97; 2000; 2005; 2007; 2013 1991 – 94; 1995 – 96; 2000; 2005; 2007; 2013; 1991 – 94; 1996 – 97; 2000; 2005; 2007; 2013
Erreur cumulative 3,07871E-08 3,07871E-08 3,07871E-08

Ce que j’observe dans ce tableau est tout d’abord une convergence progressive du cadre d’apprentissage. Dans les rondes 1 – 5, chaque distribution alternative générait des erreurs significatives, donc suffisamment inquiétantes pour être utilisées, pour des années visiblement différentes. La ronde 6 apporte un changement : les trois réalités alternatives convergent presque parfaitement l’une vers l’autre. Chaque réalité alternative produit des signaux d’inquiétude pour virtuellement les mêmes années et rend la même erreur cumulée. Avec ça, il faut se rendre compte que 6 itérations, dans un réseau neuronal artificiel, c’est comme deux fois rien. Ce réseau précis minimise son erreur cumulée après environ 1500 itérations.

J’ai donc une structure cognitive de base – les équations du réseau neuronal – qui commence son apprentissage par imaginer trois versions alternatives de la réalité et ensuite converge très vite vers un chemin commun pour toutes les trois. J’avais continué d’expérimenter avec ce réseau en remplaçant dans l’algorithme d’origine la fonction sigmoïde Ω =1/(1+e-x) par une autre, fréquemment utilisée dans les réseau neuronaux, c’est-à-dire la tangente hyperbolique tan h = (e2x – 1)/(e2x + 1) ainsi que sa dérivée tan h’. Le « x » c’est comme avant, donc une moyenne pondérée des données réelles d’entrée, modifiées avec des coefficients aléatoires de pondération.    Normalement, lorsque je lis de la littérature à propos des réseaux neuronaux, la tangente hyperbolique est présentée comme une structure d’apprentissage plus rapide et plus légère que le sigmoïde. Seulement voilà, ici, la tangente hyperbolique, elle n’apprend pas, au moins pas dans les 6 rondes surveillées. Elle ne génère que des tan h = 1 avec des tan h’ rigoureusement nulles. Officiellement, l’erreur cumulative de jugement est toujours rigoureusement E = 0.

En d’autres mots, pendant que la structure logique basée sur le sigmoïde générait des petites inquiétudes à reprendre pour l’apprentissage ultérieur, sa mutation basée sur la tangente hyperbolique ne fait qu’éteindre et étouffer toute inquiétude possible. Elle agit comme un réducteur systématique de dissonance cognitive. Les valeurs espérées de la variable de résultat sont toutes égales à 1, donc évidemment tout aussi fausses que celles générées par le sigmoïde, seulement avec la tangente hyperbolique c’est vraiment toujours tan h = 1 et tan h = 0, donc quelle que soit l’erreur de jugement y – tan h(x), le réseau l’ignore et prétend que tout va bien. Ce même réseau, avec la tangente hyperbolique au lieu du sigmoïde, est donc comme une personne qui (apparemment) se fout de commettre erreur après erreur et fait tout pour étouffer toute dissonance cognitive. Par conséquent, cette personne n’apprend rien.

Je traduis ces observations pour les besoins de mes études sur l’intelligence collective. Ces deux structures logiques – celle basée sur le sigmoïde et celle basée sur la tangente hyperbolique – diffèrent par leur capacité de produire, ça et là, des dérivées locales non-nulles. Nous avons une fonction du quotidien, une façon de vivre de jour au jour. Une dérivée non-nulle de cette fonction, générée comme réponse à une vision imaginaire de la réalité (données d’entrée modifiées avec des coefficients aléatoires) veut dire que nous sommes capables de produire du changement dans notre fonction du quotidien en réponse à une idée de ce que notre réalité pourrait être, avec un peu d’imagination. En revanche, une dérivée toujours rigoureusement nulle veut dire qu’un tel changement est bloqué.

Je continue d’expérimenter avec l’algorithme. Je modifie la façon originelle de générer la version alternative de réalité. Je modifie donc l’imagination de mon réseau neuronal. Originellement, les coefficients aléatoires étaient produits avec la fonction « random.rand » du langae Python, dans l’intervalle entre 0 et 1. Maintenant, je la remplace par une contrainte « erandom.rand », donc mes coefficients aléatoires sont produits comme des puissances aléatoires de la constante d’Euler e ≈ 2,7188. Avec cette imagination exponentielle, les neurones basés sur la fonction sigmoïde arrêtent d’apprendre. Ils se comportent de façon « rien ne se passe qui nous intéresse », donc ils rendent toujours Ω = 1 et Ω’ = 0 et pas question qu’il en soit autrement.

En revanche, les neurones basés sur la tangente exponentielle se comportent en mode panique. Dans la couche neuronale cachée du réseau (elle n’est pas vraiment cachée, c’est juste du jargon informatique ; elle est tout simplement intermédiaire entre la couche d’entrée et celle de résultat, voilà tout), certaines années produisent des dérivées locales nulles pendant que certaines autres rendent « opération impossible » lorsqu’ils doivent calculer ces tangentes locales.

Je modifie encore une fois l’imagination du réseau. Dans la couche neuronale cachée la réalité d’entrée est modifiée de façon similaire à celle que j’ai déjà utilisé dans mon travail de recherche sur l’efficience énergétique. Pour chaque « xi » je produis un coefficient wi = ln(xi)/(t – 1989), donc une mesure de la distance entre l’année donnée et 1989. Dans la couche de résultat, je garde la méthode initiale, donc celle de pondération avec un coefficient aléatoire rendu par la fonction « random.rand ». Le réseau basé sur le neurone sigmoïde commence par générer une erreur cumulative énorme dans la première ronde – E > 20 – mais dans les rondes consécutives ça descend vers les niveaux observés dans Tableau 1. Les neurones qui utilisent la tangente hyperbolique se comportent d’une façon similaire.

Voilà donc une autre observation utile. Pour qu’un réseau neuronal soit capable d’apprentissage, il doit y avoir cohérence entre son imagination – donc la méthode de produire des visions alternatives de la réalité – et le mode de traitement des stimuli alternatifs ainsi produits. L’apprentissage survient lorsque l’imagination rend possible un tel traitement des stimuli qui génère, à son tour, des petits signaux locaux d’inquiétude et ceux-ci sont repris comme matériel cognitif de valeur. L’apprentissage se présente comme un sentier étroit entre l’ignorance délibérée d’une part (étouffement de dissonance cognitive) et la panique d’autre part. Un réseau neuronal capable d’avancer le long de ce sentier peut utiliser même une imagination des plus sauvages, qui initialement produit une erreur de jugement de taille galactique, car il peut la traduire très vite en ce petit train-train des petits signaux locaux d’inquiétude.

Une question me saisit : que se passerait-il si un être humain aurait la capacité de voir la réalité exactement comme elle est, sans aucune distorsion ? Selon mon expérience avec cet algorithme de réseau neuronal, cela voudrait dire la fin de tout apprentissage. Cette forme particulière d’intelligence, écrite dans les équations de cet algorithme, exige une vision distordue de la réalité, pour que celle-là génère des erreurs de jugement possibles à utiliser dans l’avenir. Pas de distorsion veut dire absence d’erreur de jugement et sans celui-ci, pas d’apprentissage. Désolé, les mecs, mais apparemment, il faut être ne serait-ce qu’un tout petit peu bête pour apprendre quoi que ce soit.

Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ?