Carrément sidéré par mes propres résultats

Mon éditorial

Voilà ! Je reviens. Je me suis absenté de ce blog pour quelques jours mais que voulez-vous : la vie d’un prof d’université, surtout au début de l’année académique, c’est une vie bien abondante. Les cours commencent, donc je suis pris en classe, et la fin de l’année semble soudainement tellement plus proche, et il devient pressant de gérer ce qui reste de mes fonds de recherche. De toute façon, même si je le suis un peu déconnecté de mon blog pendant quelques jours, ça a été une déconnexion féconde. Non, ce n’est pas ce que vous pensez : j’ai tout simplement fini d’écrire un article où j’ai plus ou moins développé cette idée de corrélation entre la structure de la population humaine et l’accès à l’énergie, sous toutes ses formes, bouffe incluse. La version pré-éditoriale de l’article, en anglais, est accessible sous ce lien hypertexte-là . Du nouveau, là-dedans ? Certainement. Je viens de construire une preuve que la grande majorité des pays dans le monde pourraient virer à 180 degrés vers les énergies renouvelables et ce virage non seulement n’aurait pas compromis leur stabilité socio-économique, mais aussi il pourrait créer des conditions pour accommoder des populations plus grandes que maintenant. Dans tout cet optimisme, il y a des réserves. Les deux pays les plus peuplés du monde – la Chine et l’Inde – déteignent de ce fonds optimiste. Dans leurs cas, mon modèle semble ne pas marcher.

Bon, j’explique. C’est une fraîche tranche de science, bien chaude, droit du four, et je pense qu’une exposition de ma méthode et de mes résultats pourrait être bien utile comme du matériel éducatif. Alors voilà : je me suis concentré sur cette équation de base de Paul Krugman (Krugman 1991[1], équation no. 1) où la différentiation spatiale d’une économie se développe par la suite d’une une sorte de tension entre le secteur manufacturier de l’économie et le secteur agraire. J’ai essayé de comprendre vraiment le fond des fonds de cette équation et je suis venu à la conclusion qu’une telle tension se développe, en fait, à chaque fois que deux secteurs d’un même système socio-économique changent à des vitesses différentes. Celui qui change plus vite va inévitablement absorber la part de lion du capital et de la main d’œuvre et c’est ainsi qu’il créera une différentiation progressive de l’espace habité par les hominides intelligents (enfin, suffisamment intelligents pour créer des secteurs économiques) en un centre et une périphérie. A ce point-là, je me suis souvenu de mon intuition générale en ce qui concerne l’énergie : nous l’absorbons sous deux formes différentes, comme alimentation et comme technologie. Les habits alimentaires et leur contexte économique, ça change lentement. En revanche, les technologies qui nous permettent d’utiliser l’énergie plutôt que de la manger, ça change vite.

J’ai donc retourné à cette équation de base que je vous avais déjà présentée : « Population = a * (Energie, pouvoir µ) * (absorption alimentaire, pouvoir 1 – µ» (consultez : “Ma formule magique marche dans certains cas, et pas tout à fait dans des cas autres que certains” ), seulement maintenant, je voulais estimer les paramètres pour chaque pays bien dans l’esprit originel de la fonction de production de Charles W. Cobb et Paul H. Douglas[2]. Je voulais donc établir, pour chaque pays séparément, une fonction d’équilibre général entre la population, telle qu’elle est en l’endroit donné au moment donné, et l’agrégat de population potentiellement possible avec un régime alimentaire donné et une consommation donnée d’énergie. Comme vous voyez, il y a beaucoup de donné dans tout ça et c’est justement là toute la spécificité de la méthode de Cobb et Douglas. On travaille avec les valeurs absolues. Pas des logarithmes, pas des valeurs standardisées, mais bien avec les valeurs absolues. Dans un tel cas, il faut beaucoup d’expérimentation avec les unités de mesure avant que ça marche. C’est probablement pour ça que nous, les économistes, on n’aime pas vraiment travailler avec les magnitudes réellement observées des phénomènes mais bien plutôt avec quelque chose de transformé et bien calme.

Finalement, j’étais arrivé à quelque chose d’intelligible avec la population exprimée en millions, sur le côté gauche de l’équation, et sur le côté droit l’énergie consommée par an par tête d’habitant, en tonnes d’équivalent pétrole, ainsi que l’absorption alimentaire par an par tête d’habitant, en mégacalories (donc en milliers de ces kcal que vous pouvez voir sur les emballages des produits alimentaires).

Le truc que j’avais réussi à faire, alors, pour plus d’une centaine des pays du monde entier, chaque pays pris séparément, était de trouver un telle valeur du paramètre µ – dans « Energie par habitant pouvoir µ, multipliée par absorption alimentaire pouvoir 1 – µ » – qui conduisait à calculer la taille d’une population hypothétique à peine plus grande que la population réelle. A peine veut dire quelques pourcents. C’est un peu comme une fonction de création d’espace habitable pour les humains. Si vous connaissez donc des divinités à la recherche d’inspiration pour créer des réalités mythiques, donnez-leur l’adresse de ce blog : j’ai une fonction de création bien robuste. Robuste, dans ce cas, veut dire que la proportion entre cette population hypothétiquement calculée et la population réelle demeure bien stable dans le temps. Tout en jouant au Bon Dieu, je me suis aperçu que la création d’espace vital sur la base de l’énergie, ça ne se passe pas du tout de la même façon dans tous les 116 pays que j’ai testé. Il y a des pays où c’est bien l’utilisation d’énergie qui a le pouvoir dominant dans cette fonction, mais il y en a aussi où c’est exactement l’inverse : c’est le régime alimentaire qui a la main donnante dans la création d’espace habitable. Vous direz « Bien sûr ! Faut pas avoir un doctorat pour le savoir : il y a des gens affamés dans ce monde et leur espace habitable c’est surtout leur prochain repas, pas vraiment la prochaine Lexus hybride ». C’est partiellement vrai, mais il y a des grosses surprises. Tenez les Etats-Unis. Ils sont bien nourris, là-bas, de l’autre côté de l’Atlantique, n’est-ce pas ? Eh bien, aux Etats-Unis, le modèle marche seulement si la consommation d’énergie par tête d’habitant a un pouvoir de µ = 0,3 et pas plus. Naturellement, l’absorption alimentaire gagne un pouvoir 1 – µ = 0,7 dans la création d’équilibre démographique. Juste pour vous donner une idée : mon pays natal, la Pologne, ça se balance dans mon modèle (drôle de jeu de mots, par ailleurs) avec énergie pouvoir µ = 0,56 et la bouffe par habitant (donc ma bouffe à moi aussi) pouvoir 1 – µ = 0,44. Si donc nous, les Polonais, on se compare avec les Américains, notre changement démographique est basé plus sur l’utilisation de l’énergie à travers la technologie et moins sur l’absorption alimentaire. Comment ça marche ? Honnêtement, je ne comprends pas encore. Je viens de trouver et prouver la validité d’une fonction qui produit des populations à partir de la bouffe et de l’énergie à brûler, mais je suis comme un apprenti sorcier : j’ai jeté des ingrédients dans la marmite et j’ai obtenu une potion plus qu’intéressante mais je n’y comprends que dalle.

Le truc qui est même plus intéressant est que j’ai réussi à stabiliser mon modèle avec la même robustesse après avoir remplacé la consommation totale d’énergie par tête d’habitant avec juste la consommation d’énergies renouvelables. En termes de théorie économique cela veut dire que j’ai éliminé de la civilisation toutes les technologies basées sur les énergies non-renouvelables, en ne laissant que celles à 100% renouvelables et après ce petit remue-ménage j’ai encore réussi à stabiliser cette civilisation, dans plus de 100 pays différents. Etrange ? Eh ben oui. Je suis étonné par les résultats que j’ai obtenus. Honnêtement. Pas de conneries. Souvent, dans la science, on écrit des articles quand les résultats de la recherche ne sont plus un puzzle. Moi, dans ce cas précis, j’ai écrit cet article parce que j’étais carrément sidéré par mes propres résultats.

[1] Krugman, P., 1991, Increasing Returns and Economic Geography, The Journal of Political Economy, Volume 99, Issue 3 (Jun. 1991), pp. 483 – 499

[2] Charles W. Cobb, Paul H. Douglas, 1928, A Theory of Production, The American Economic Review, Volume 18, Issue 1, Supplement, Papers and Proceedings of the Fortieth Annual Meeting of the American Economic Association (March 1928), pp. 139 – 165

Ma formule magique marche dans certains cas, et pas tout à fait dans des cas autres que certains

Mon éditorial

Hier, dans ma mise à jour en anglais (consultez “Core and periphery” ), j’ai creusé un peu le modèle de différentiation spatiale d’une économie, plume Paul Krugman (Krugman 1991[1]). J’avais pris l’équation (1) de son modèle original – U = CMµ*CA1-µ – où U est l’utilité agrégée, CM est la production manufacturière, CA correspond à la production agriculturale et µ est la part prise par la production manufacturière dans la demande finale. Sur cette base, j’ai développé ma propre équation U(AE) = Wµ*F1-µ  µ < 1, où U(AE) est l’utilité agrégée dérivée de la consommation de l’énergie sous toutes ses formes possibles, W correspond à la consommation finale de l’énergie, F est la consommation de nourriture et µ est la part de la demande finale dépensée sur l’énergie. Cette transmutation de ma part avait été très intuitive et en y regardant de près, après fait, j’avais remarqué que les deux équations – l’originale de Paul Krugman et la transformée façon Wasniewski – suivent la même logique de base, celle de la fonction de production de Charles W. Cobb et Paul H. Douglas[2]. J’ai revu leur article et j’ai essayé d’appliquer leur méthode originale pour donner un peu de fond et de gravitas à ma transformation.

Vu l’hypothèse que je suis en train de vérifier – « la structure spatiale de la civilisation humaine s’adapte et se regroupe en vue de l’absorption maximale d’énergie » – je me suis dit que l’utilité agrégée de la consommation de l’énergie c’est tout simplement qu’il y ait du monde en un endroit donné, donc qu’il y ait une population sur un territoire. J’ai donc mis la variable de population sur le côté gauche de l’équation en posant formellement U(AE) = Pop. Ensuite, j’ai commencé à expérimenter avec le côté droit de l’équation : je prenais de différentes variables pertinentes à la consommation de l’énergie ainsi que celles qui correspondent à l’alimentation et je les testais façon Cobb – Douglas, donc « Population = a * (Energie, pouvoir µ) * (absorption alimentaire, pouvoir 1 – µ». Après maints essais, j’ai commencé à trouver une logique qui consiste, tout d’abord à utiliser, sur le côté gauche, la population en millions (donc 36 millions était juste 36). Sur le côté droit j’avais mis la consommation finale d’énergie par tête d’habitant, par an, mesurée tonnes d’équivalent pétrole, comme ma variable « Energie ». Je la symbolise, dans ce qui suit, comme « W/Pop ». Je l’avais élevée au pouvoir 0,75, donc je l’avais traitée exactement de la même façon que Charles W. Cobb et Paul H. Douglas eût traitée leur variable dominante. Comme variable correspondante à l’absorption alimentaire, donc la variable secondaire élevée au pouvoir 1 – 0,75 = 0.25,  j’ai utilisé une métrique publiée par FAO : l’absorption annuelle de nourriture en mégacalories par personne par an, moyenne sur la période 1990 – 2008, ou « A/Pop » dans ma notation de travail. Dans Table 1, ci-dessous, je présente les résultats du test de cette fonction « Pop = (W/Pop)0,75 * (A/Pop)0,25 » dans le cas de l’Argentine. Pourquoi Argentine ? Je n’en sais rien. Pourquoi pas ? Probablement c’est juste parce que l’Argentine est au tout début des listes alphabétiques.

Table 1 – Modèle « Pop = (W/Pop)0,75 * (A/Pop)0,25 » testé pour Argentine

Année Population modèle Population réelle Population réelle divisée par population modèle
1990 16,94515987 32,72974 1,931509662
1991 17,15400412 33,19392 1,93505375
1992 17,63123882 33,655149 1,908836319
1993 17,49698756 34,110912 1,949530563
1994 18,1568104 34,558114 1,903314142
1995 18,17673406 34,994818 1,925253343
1996 18,50330199 35,419683 1,914235795
1997 18,77977444 35,833965 1,908114771
1998 19,09688338 36,241578 1,897774484
1999 19,18104255 36,648054 1,910639315
2000 19,19068218 37,057453 1,931012803
2001 18,33116134 37,471535 2,044144084
2002 17,79285682 37,889443 2,129474957
2003 18,56300544 38,309475 2,063753907
2004 19,67676644 38,728778 1,968249108
2005 19,61545345 39,145491 1,995645479
2006 20,73285834 39,55875 1,908022008
2007 20,77463916 39,969903 1,9239758
2008 21,42453224 40,38186 1,884842084
2009 20,82006283 40,798641 1,959582991
2010 21,30211457 41,222875 1,935154131
2011 21,37553072 41,655616 1,948752363
2012 21,27620936 42,095224 1,978511458
2013 21,17559846 42,538304 2,008835976

Alors, vous demanderez, qu’est-ce qu’il y a de si spécial au sujet de Table 1 ? Si vous regardez la dernière colonne, donc celle où je présente le quotient de la population réelle de l’Argentine, divisée par celle modelée avec l’équation, vous pouvez voir un quotient étonnamment stable : avec une moyenne de 1.952675804, cette proportion a une variance de 0,003343958, donc trois fois rien avec cette moyenne. Je suis donc arrivé, dans le cas de l’Argentine, à une proportion très stable entre le produit (W/Pop)0,75 * (A/Pop)0,25 et la population réelle. C’est exactement de cette façon que Charles W. Cobb et Paul H. Douglas avaient démontré la robustesse de leur fonction de production : ils avaient trouvé une proportion stable (a = 1,01) entre le produit K0,25 * L0,75 et le PIB des Etats-Unis.

Bon, alors si ça a marché pour Argentine, je teste pour un autre pays. Pour devancer des reproches d’alphabétisme ou de continentalisme, je saute jusqu’à la République Tchèque. Je présente les résultats dans Table 2, ci-dessous. Il y a deux trucs qui frappent. Premièrement, le quotient « population réelle divisée par la population modèle » est d’un ordre de grandeur plus petit que celui calculé pour Argentine, mais tout aussi stable. Avec une moyenne de 0.254871929, ce quotient présente une variance de      9,54914E-05 : presque rien.

Table 2 – Modèle « Pop = (W/Pop)0,75 * (A/Pop)0,25 » testé pour la République Tchèque

Année Population modèle Population réelle Population réelle divisée par population modèle
1990 42,01901303 10,32844 0,245803965
1991 41,09669593 10,33393 0,251454035
1992 40,12189819 10,338381 0,257674274
1993 39,19042449 10,339439 0,263825645
1994 39,60863068 10,335556 0,260942018
1995 40,58847225 10,326682 0,254424013
1996 40,82241752 10,313836 0,252651279
1997 39,88617912 10,297977 0,258184094
1998 37,84459093 10,280525 0,271651106
1999 39,37364352 10,26301 0,260656853
2000 40,28179246 10,244261 0,254314924
2001 40,66550053 10,225198 0,251446505
2002 42,07940371 10,211846 0,242680388
2003 42,82094284 10,212088 0,238483492
2004 42,39265377 10,230877 0,241336083
2005 43,04580379 10,271476 0,238617359
2006 42,88357419 10,330487 0,240896129
2007 41,88719031 10,397984 0,248237801
2008 39,71897639 10,460022 0,263350744
2009 41,20964533 10,506617 0,254955288
2010 40,03317891 10,533985 0,263131365
2011 39,8616928 10,545161 0,264543733
2012 39,38759924 10,545314 0,267731829
2013 39,0565498 10,542666 0,269933367

J’ai donc trouvé une fonction que, faute de pouvoir trouver mieux sur le champ, je peux appeler « fonction de population-énergie », produit un agrégat que je peux interpréter comme population potentielle possible sur la base de l’absorption agrégée de l’énergie. Je l’ai testé un peu au hasard, pour un pays-ci, un pays-là. D’une manière générale, la population modèle sur la base de l’absorption de l’énergie est plus grande que la population réelle, plutôt type République Tchèque, avec ce quotient « population réelle divisée par la population modèle » solide comme du béton armé. Encore, il y a des exceptions intéressantes. Tenez l’Indonésie. Je présente son cas dans Table 3, ci-dessous. Voilà une population réelle plusieurs fois plus élevée que la population modelée sur la base de l’absorption locale d’énergie. En plus, le quotient « population réelle divisée par la population modèle » dans le cas Indonésien est beaucoup moins stable : avec une valeur moyenne de 25.18571988, il présente une variance de 0.390129622, donc beaucoup plus respectable que chez les Tchèques et les Argentins. Conclusion : ma formule magique marche dans certains cas, et pas tout à fait dans des cas autres que certains. Chouette ! Je vois une bonne recherche à l’horizon.

Table 3 – Modèle « Pop = (W/Pop)0,75 * (A/Pop)0,25 » testé pour l’Indonésie

Année Population modèle Population réelle Population réelle divisée par population modèle
1990 6,910456897 182,177052 26,36251911
1991 7,07024969 185,379624 26,21967146
1992 7,20208569 188,554943 26,18060255
1993 7,632690336 191,693719 25,11482984
1994 7,549393699 194,782664 25,80110029
1995 8,031643459 197,814284 24,62936571
1996 8,157250449 200,786111 24,61443501
1997 8,271624937 203,707717 24,62729132
1998 8,049718606 206,598599 25,66531939
1999 8,248410897 208,644079 25,29506369
2000 8,672234316 211,540428 24,39284045
2001 8,734987683 214,448301 24,55049838
2002 8,88687902 217,369087 24,45955284
2003 8,816998424 220,307809 24,98671298
2004 9,158320367 223,268606 24,3787722
2005 9,188094507 226,254703 24,62476881
2006 9,257872076 229,26398 24,76421991
2007 9,135126017 232,29683 25,42896831
2008 9,180058336 235,360765 25,63826464
2009 9,567339213 238,465165 24,92492005
2010 9,806815912 241,613126 24,63726537
2011 9,56672306 244,808254 25,58956212
2012 9,698388916 248,037853 25,57516049
2013 9,665810563 251,268276 25,99557216

[1] Krugman, P., 1991, Increasing Returns and Economic Geography, The Journal of Political Economy, Volume 99, Issue 3 (Jun. 1991), pp. 483 – 499

[2] Charles W. Cobb, Paul H. Douglas, 1928, A Theory of Production, The American Economic Review, Volume 18, Issue 1, Supplement, Papers and Proceedings of the Fortieth Annual Meeting of the American Economic Association (March 1928), pp. 139 – 165

Les implications de ce que je viens d’écrire

Mon éditorial

Je suis en train de penser à plusieurs trucs à la fois, ce qui arrive parfois à tout le monde. Je continue mon apprentissage de Python 3.6.2 et de documenter ce processus. Je suis arrivé à ce stade d’ignorance heureuse où je prends simplement une commande de Python et je joue avec, très intuitivement, sans en espérer trop, juste pour voir ce que ça donne. J’ai donc arrêté d’essayer d’utiliser Python comme une version moins confortable d’Excel et j’explore sans idées prédéterminées. Je me demande si des changements technologiques à l’échelle des sociétés ne marcheraient mieux si on faisait ça de façon organisée, comme « jours d’apprentissage spontané ». L’autre truc auquel je pense c’est ma recherche en cours, celle qui concerne l’innovation, le changement technologique et la transition vers les énergies renouvelables. Je commence à mettre en place la structure d’un livre sur ce sujet. Le titre de travail c’est quelque chose comme « Bons en énergie », puisque je veux y développer cette idée centrale que nous, c’est-à-dire la civilisation humaine, nous excellons à l’absorption d’énergie de notre environnement et à sa transformation et que la transition vers les énergies renouvelables peut être mieux comprise et peut-être même mieux organisée si on la base sur cette auto-compréhension.

Il y a beaucoup de choses que je voudrais mettre dans ce livre. Tout d’abord, le fait central contemporain serait ce changement qui s’est effectué en 2007 – 2008, lorsque le marché d’énergies renouvelables avait tout à coup commencé à croître beaucoup plus vite qu’avant. Je veux trouver et exposer une explication de ce fait. La revue de littérature sur l’histoire de la technologie m’a fait découvrir l’hypothèse générale de déterminisme technologique, avec toutes ses nuances et contre-arguments et quand j’y pense, elle ferait un joli paysage théorique pour l’étude de la transition énergétique. Attention, ça arrive ! Voilà une hypothèse générale qui vient de se former dans mon esprit. Vite, avant qu’elle refroidisse : « Les changements sociaux et technologiques de la civilisation humaine sont fonctionnellement orientés sur la maximisation d’absorption d’énergie de l’environnement ». Ouais, ce vrai que ça fait un joli fond pour le contenu de ce livre. Sur ce fond, avec des coups légers (et bien incertains encore, soyons francs) de clavier de mon MacBook Air, j’esquisse quelques hypothèses plus spécifiques. Un, la structure spatiale de la civilisation humaine s’adapte et se regroupe en vue de cette absorption maximale d’énergie. Deux, la cadence de changement technologique est fonctionnellement liée au déficit alimentaire éprouvé par la société donnée et atteint son maximum dans les sociétés où ce déficit, tout en étant observable, n’excède pas 90 kilocalories par jour par personne. Trois, le changement technologique suit une fonction évolutive de sélection et hiérarchisation, où des entités sociales se spécialisent, respectivement, en la fonction mâle de conception et la fonction femelle de recombinaison et reproduction, ce qui crée une hiérarchie entre les entités mâles en fonction de leur aptitude à satisfaire les exigences des entités femelles. Quatre, le changement technologique au niveau de l’énergie est fonctionnellement lié au développement des systèmes de communication, avec la masse monétaire jouant le rôle d’un système de communication parmi autres et la vélocité de l’argent étant inversement proportionnelle à la cadence du changement technologique. Eh bien, voilà, ça n’a pas été si dur que ça. Une hypothèse générale et quatre hypothèses spécifiques, chacune correspondant à un chapitre du livre.

L’autre truc auquel je pense c’est le début des cours à la fac. Je suis prof d’université et mon année civile se structure en fonction de l’année académique. J’aime bien ce travail et c’est en fait avec un peu d’impatience que j’attends le premier Octobre chaque année. En ce qui concerne ce blog, l’avènement de l’année académique veut dire que je placerais, outre mes mises à jour genre recherche, des mises à jour éducatives. Comme j’enseigne en anglais et en polonais, je vais utiliser ces deux blogs jumeaux – https://discoversocialsciences.com et https://researchsocialsci.blogspot.com – pour placer du matériel éducatif en anglais et à part ça, je démarre avec un blog en polonais pour faire le même en ma langue natale. Je ne sais pas si j’aurai le temps et l’énergie pour jumeler en français le matériel éducatif publié en anglais mais enfin, on va bien voir. Je me dis, quand j’y pense, que ce serait judicieux de combiner d’une certaine façon le matériel éducatif avec l’écriture de mon livre. Après tout, je suppose que ce n’est pas interdit de partager mes intérêts de recherche avec mes étudiants.

Je m’en prends donc à la première hypothèse de mon livre : « la structure spatiale de la civilisation humaine s’adapte et se regroupe en vue de l’absorption maximale d’énergie ». Je pense qu’il est utile que j’explique, une fois de plus et certainement pas la dernière, à l’adresse des pas-tout-à-fait-initiés, à quoi ça sert, une hypothèse. Vous pouvez imaginer la réalité telle que nous la percevons comme du sacré bordel. L’une des premières choses à faire avec la réalité perçue consiste donc à y mettre de l’ordre. Une hypothèse est comme un classeur ou un carton de rangement : j’y mets des choses qui semblent y avoir leur place plutôt que dans un autre classeur (carton). Nous pouvons formuler un nombre indéfiniment grand d’hypothèses à propos de chaque morceau de réalité observable, même si vous venez d’extraire ledit morceau de l’une de vos narines. Dans ce domaine vaste de tout ce que je peux dire à propos de quelque chose, il y a un sous-ensemble d’hypothèses qui sont raisonnablement vérifiables, et il y a tout le reste, intéressant, certes, mais peu utile. La technique scientifique de base consiste donc à prendre une boîte de rangement et d’y mettre certains trucs, tout en laissant tout le reste de la réalité à ranger par d’autres esprits hantés comme le mien. Lorsque je formule cette hypothèse au sujet de la structure spatiale de la civilisation humaine, je collecte des faits et des théories à propos de la structure spatiale de l’habitat humain. Je ne sais pas, en ce moment précis, quand j’écris ces mots, si cette hypothèse est suffisamment robuste pour être admise comme vraie sous des conditions raisonnables. Je n’en sais rien et je veux le découvrir. L’hypothèse m’aide à diriger mes efforts. Elle est donc comme un classeur croisé avec un viseur optique.

C’est ainsi donc que je me dirige vers le Grand Maître de la géographie économique : Paul Krugman. Je fourre dans le passé du Grand Maître. Je vais suffisamment loin en arrière pour découvrir ce que le Grand Maître écrivait, lorsqu’il n’était pas encore tout à fait le Grand Maître : le début des années 1990. A l’époque, Paul Krugman était encore le Luke Skywalker de l’économie : main sûre, esprit alerte, du talent reconnu, mais pas encore de lettres de noblesse. En 1991, il a publié un article intitulé « Increasing Returns and Economic Geography » (Krugman 1991[1]). Dans cet article, Paul Krugman présente un modèle de différentiation interne d’un pays en un centre industrialisé et une périphérie agriculturale. Pour réaliser des économies d’échelle tout en minimisant le coût de transport, les entreprises manufacturières se situent dans la région avec la demande la plus significative, seulement la localisation de la demande elle-même dépend de la localisation de production. L’émergence d’un modèle « centre – périphérie » dépend des coûts de transport, d’économies d’échelle, ainsi que de la part relative de l’industrie manufacturière dans le revenu national.

En 1998, Paul Krugman avait donné une sorte de résumé de sa théorie de géographie économique (consultez : Krugman 1998[2]). Sa conclusion d’alors était que la soi-disant nouvelle géographie économique se démarque par l’utilisation systématique de la fonction d’utilité maximale dans le contexte de l’équilibre général, en dérivant le comportement agrégé de la maximalisation individuelle. L’avantage principal de cette théorie, selon Krugman, est de démontrer comment des accidents historiques peuvent donner une forme géographique à l’activité économique et comment des changements graduels dans les paramètres économiques peuvent produire des changements discontinus dans la structure spatiale. De cette façon, la géographie économique est placée droit dans le créneau central de la recherche économique. A ce point-là, j’ai comme un pressentiment qu’au moins certains d’entre vous vont avoir besoin d’une exégèse de ma part. Eh bien, à la source, c’est tout la faute à Léon Walras , un économiste français qui a inventé ce truc d’équilibre général. En gros, sa théorie, la voilà : lorsqu’on fait du business, même si on s’imagine d’en faire d’une manière absolument géniale, genre « plus ingénieux que moi, tu meurs », en fait, on en fait d’une façon terriblement standardisée à travers la structure sociale. Tout le monde pense qu’ils sont des génies de l’industrie mais ils convergent tous vers un nombre très limité de stratégies qui marchent vraiment. Si tout ce petit monde avait une information parfaite et pouvait transférer les moyens de production librement entre des différents emplois, on pourrait vite atteindre un état de productivité parfaite avec ce qu’on a en termes de capital et travail et ce serait précisément cet état d’équilibre général. Seulement voilà, en l’absence poignante de conditions parfaites, on doit se satisfaire d’un état voisin de l’équilibre général.

A quoi bon, vous demanderez, se donner de la peine pour étudier un état qui n’a aucune chance d’exister dans la vie réelle ? Eh bien, voilà le truc et la grosse découverte : les économistes ont découvert que la société peut changer au rythme des petits pas ou à celui des bonds de sept lieues. Tant que l’état de l’économie peut être interprété comme voisin du même état d’équilibre général, le changement prend place à petits pas. Lorsqu’on fiche vraiment du bordel autour de nous et lorsque le voisinage de l’équilibre général donné (donc avec des paramètres donnés) devient tellement distant qu’on ne peut même plus le voir à l’horizon, cet équilibre, et lorsque bon gré mal gré il faut se construire un nouvel état d’équilibre général pour l’avoisiner, alors c’est du changement social profond, comme un tsunami économique. Bref, tout état d’une société peut être étudié, du point de vue économique, comme voisin d’un équilibre général bien défini par un ensemble de paramètres.

Voilà donc que j’ai une piste Krugmanienne pour développer sur mon hypothèse. Je vais chercher un état d’équilibre général qui est plausiblement corrélé avec l’absorption de l’énergie. Ensuite, je vais l’utiliser comme un échafaudage pour bâtir un modèle de différentiation spatiale en fonction de l’absorption de l’énergie. Vous ne comprenez pas tout à fait ce que je veux dire ? Vous n’êtes pas les seuls : moi non plus je ne comprends pas tout à fait les implications de ce que je viens d’écrire. Pas encore. Ça va venir.

[1] Krugman, P., 1991, Increasing Returns and Economic Geography, The Journal of Political Economy, Volume 99, Issue 3 (Jun. 1991), pp. 483 – 499

[2] Krugman, P., 1998, What’s New About The New Economic Geography?, Oxford Review of Economic Policy, vol. 14, no. 2, pp. 7 – 17