Le cycle d’adaptation

Mon éditorial sur You Tube

Je développe sur mon concept d’Étangs Énergétiques (voir « La ville éponge » et « Sponge Cities »). J’ai décidé d’utiliser le Navigateur des Projets, accessible à travers la page de « International Renewable Energy Agency ». La création d’un projet, à travers cette fonctionnalité, contient 6 étapes : a) identification b) analyse stratégique c) évaluation d) sélection e) pré-développement et f) développement proprement dit.

Le long de ce chemin conceptuel, on peut utiliser des exemples et études des cas accessibles à travers la sous-page intitulée « Learning Section ». Pour le moment, je me concentre sur la première phase, celle d’identification. Je liste les questions correspondantes d’abord, telles qu’elles sont présentées dans le Navigateur des Projets et après j’essaie d’y répondre. 

Questions de la phase d’identification du projet :

Groupes sociaux impliqués

Qui est impliqué dans le projet ? (gouvernement central, gouvernements locaux et communautés locales, investisseurs professionnels etc.)

Qui contrôle les résultats du projet et les bénéfices qui en découlent ?

Quels besoins externes doivent être satisfaits pour assurer le succès du projet ?

Quels groupes-cibles sont directement affectés par le projet ?

Qui sont les bénéficiaires ultimes du projet à long terme ?

Problème

Quel est le problème essentiel que le projet prend pour objectif de résoudre ?

Quelles sont ses causes ?

Quels sont les conséquences du problème essentiel ?

Objectifs

Quelle est la situation désirée que le projet doit aider à atteindre ?

Quelles sont les effets directs de la situation désirée ?

Quelles sont les retombées indirectes de la situation désirée ?

Quelles moyens et méthodes doivent être appliqués pour atteindre la situation désirée ?

Alternatives

Quelles actions alternatives peuvent-elles être envisagées ?

Quelle est la stratégie essentielle du projet ?

Comme j’essaie de répondre en ordre à ces questions, un désordre salutaire s’immisce et me fait formuler cette observation générale : dans la plupart des villes européennes, les infrastructures en place pour le drainage d’eau de pluie et la provision d’eau potable sont adaptées, et même très bien adaptées, à un climat qui n’existe plus qu’à peine. Durant des siècles nous avons appris, en Europe, où est la ligne d’inondation dans un endroit donné et quel est le niveau normal d’eau dans la rivière locale. Nous avons construit des systèmes de drainage qui était presque parfaits 30 ans auparavant mais qui sont débordés de plus en plus souvent. Point de vue technologie, nos infrastructures urbaines forment la solution aux problèmes qui s’évanouissent progressivement. Je veux dire qu’il n’y a pas vraiment d’alternative technologique au concept général de la ville-éponge. Les villes européennes sont ce qu’elles sont, dans une large mesure, parce qu’à travers des siècles les communautés locales avaient appris à utiliser les ressources hydrologiques crées par le climat typiquement tempéré. Le climat change et les conditions hydrologiques changent aussi. Les communautés urbaines d’Europe doivent inventer et mettre en place des solutions infrastructurelles nouvelles ou bien elles vont dépérir. J’exagère ? Allez-donc visiter l’Italie. Vous voyez le Nord opulent et le Sud pauvre. Croiriez-vous qu’il y a 2200 ans c’était exactement l’inverse ? Dans les temps de l’Ancienne Rome, république ou empire, peu importe, le Sud était le quartier chic et le Nord c’étaient les terres quasi-barbares. Les conditions externes avaient changé et certaines communautés locales avaient dégénéré.       

Je pense donc que la direction générale que je veux suivre dans le développement de mon concept d’Étangs Énergétiques est la seule direction viable à long-terme. La question est comment le faire exactement. Voilà donc que je viens à la dernière question de la liste d’identification, quelques paragraphes plus tôt : Quelle est la stratégie essentielle du projet ?  Je pense que cette stratégie doit être institutionnelle d’abord et technologique ensuite. Elle doit avant tout mobiliser plusieurs acteurs sociaux autour des projets infrastructurels. Tel que je l’envisage, le projet d’Étangs Énergétiques implique surtout et d’abord des communautés urbaines locales dans les villes européennes qui se trouvent dans des plaines fluviales le long des rivières. Suivant la structure urbaine exacte en place, on peut parler des communautés urbaines strictement dites ou bien des communautés métropolitaines, mais la logique de base reste la même : ces villes font face à un aspect spécifique des changements climatiques, donc à un rythme de précipitations qui évolue vers des averses de plus en plus violentes entrecoupées par des périodes de sécheresse. Les plaines qui longent les rivières européennes se transforment déjà en quelque chose de typiquement fluvial, un peu comme la vallée du Nile en Égypte : l’irrigation naturelle des couches superficielles du sol dépend de plus en plus de ces averses violentes. Cependant, les infrastructures de provision d’eau dans ces communautés urbaines sont, dans leur grande majorité, adaptés aux conditions environnementales du passé, avec des précipitations bien prévisibles, survenant en des cycles longs, avec des chutes de neige substantielles en hiver et des dégels progressifs dans les dernières semaines d’hiver et les premières semaines du printemps.

Les résultats espérés du projet sont les suivants : a) plus d’eau retenue sur place après averses, y compris plus d’eau potable, donc moindre risque de sécheresse et moins de dégâts causés par la sécheresse  b) moindre risque d’inondation, moindre coût de prévention ponctuelle contre l’inondation ainsi qu’un moindre coût des dégâts causés par les inondations c) contrôle des retombées environnementales indirectes de la transformation du terrain en une plaine fluviale de fait d) électricité produite sur place dans les turbines hydrauliques qui utilisent l’eau de pluie.

Lorsque je me repose la question « Qui contrôle ces résultats et qui peut le plus vraisemblablement ramasser la crème des résultats positifs ? », la réponse est complexe mais elle a une logique de base : ça dépend de la loi en vigueur. Dans le contexte légal européen que je le connais les résultats énumérés ci-dessus sont distribués parmi plusieurs acteurs. De manière générale, le contrôle des ressources fondamentales, comme les rivières et l’infrastructure qui les accompagne ou bien le système de provision d’électricité, sont sous le contrôle essentiel des gouvernements nationaux, qui à leur tour peuvent déléguer ce contrôle aux tierces personnes. Ces tierces personnes sont surtout les communautés urbaines et les grandes sociétés infrastructurelles. En fait, dans le contexte légal européen, les habitants des villes n’ont pratiquement pas de contrôle direct et propriétaire sur les ressources et infrastructures fondamentales dont dépend leur qualité de vie. Ils n’ont donc pas de contrôle direct sur les bénéfices possibles du projet. Ils peuvent avoir des retombées à travers les prix de l’immobilier, où ils ont des droits propriétaires, mais en général, point de vue contrôle des résultats, je vois déjà un problème à résoudre. Le problème c’est que quoi qu’on essaie de transformer dans l’infrastructure urbaine des villes européennes, il est dur de cerner qui est le propriétaire du changement, vu la loi en vigueur.

Je veux cerner les risques que mon concept d’Étangs Énergétiques, ainsi que le concept chinois des Villes Éponges, ont pour but de prévenir ou au moins réduire : les risques liés aux inondations et sécheresses qui surviennent en des épisodes apparemment aléatoires. J’ai fait un petit tour de littérature à ce propos. Je commence par les sécheresses. Intuitivement, ça me semble être plus dangereux que l’inondation, dans la mesure où il est quand même plus facile de faire quelque chose avec de l’eau qui est là en surabondance qu’avec de l’eau qui n’est pas là du tout. Je commence avec une lettre de recherche de Naumann et al. (2015[1]) et il y a un truc qui saute aux yeux : nous ne savons pas exactement ce qui se passe. Les auteurs, qui par ailleurs sont des experts de la Commission Européenne, admettent ouvertement que les sécheresses en Europe surviennent réellement, mais elles surviennent d’une manière que nous ne comprenons que partiellement. Nous avons même des problèmes à définir ce qu’est exactement un sécheresse dans le contexte européen. Est-ce que le dessèchement du sol est suffisant pour parler de la sécheresse ? Ou bien faut-il une corrélation forte et négative dudit dessèchement avec la productivité agriculturale ? Aussi prudent qu’il doive être, le diagnostic des risques liées à la sécheresse en Europe, de la part de Neumann et al., permet de localiser des zones à risque particulièrement élevé : la France, l’Espagne, l’Italie, le Royaume Uni, la Hongrie, la Roumanie, l’Autriche et l’Allemagne.

Il semble que les risques liés aux inondations en Europe sont mappés et quantifiés beaucoup mieux que ceux liés aux épisodes de sécheresse. Selon Alfieri et al. (2015[2]), à l’heure actuelle la population affectée par les inondations en Europe est d’environ 216 000 personnes et la tendance est vers un intervalle entre 500 000 et 640 000 personnes en 2050. Côté finances, les dommages annuels causés par les inondations en Europe sont d’à peu près €5,3 milliards, contre quelque chose entre €20 milliards et €40 milliards par an à espérer en 2050. Lorsque je compare ces deux pièces de recherche – l’une sur les épisodes de sécheresse, l’autre sur les inondations – ce qui saute aux yeux est une disparité en termes d’expérience. Nous savons tout à fait précisément ce qu’une inondation peut nous faire dans un endroit donné sous des conditions hydrologiques précises. En revanche, nous savons encore peu sur ce que nous pouvons souffrir par la suite d’un épisode de sécheresse. Lorsque je lis le rapport technique par Vogt et al. (2018[3]) je constate que pour nous, les Européens, la sécheresse est encore un phénomène qui se passe ailleurs, pas chez nous. D’autant plus difficile il nous sera de s’adapter lorsque les épisodes de sécheresse deviennent plus fréquents.

Je commence donc à penser en termes de cycle d’adaptation : un cycle de changement social en réponse au changement environnemental. Je crois que le premier épisode d’inondation vraiment massive chez moi, en Pologne, c’était en 1997. En revanche, la première sécheresse qui s’est fait vraiment remarquer chez nous, à travers des puits asséchés et des centrales électriques menacées par des problèmes de refroidissement de leurs installations, du au niveau exceptionnellement bas d’eau dans les rivières, ça semble avoir été en 2015. Alors, 2015 – 1997 = 18 ans. C’est étrange. C’est presque exactement le cycle que j’avais identifié dans ma recherche sur l’efficience énergétique et ça me fait repenser l’utilisation d’intelligence artificielle dans ma recherche. Le premier truc c’est l’application cohérente du perceptron pour interpréter les résultats stochastiques de ma recherche sur l’efficience énergétique. La deuxième chose est une généralisation de la première : cela fait un bout de temps que je me demande comment connecter de façon théorique les méthodes stochastiques utilisées dans les sciences sociales avec la structure logique d’un réseau neuronal. L’exemple de parmi les plus évidents, qui me vient maintenant à l’esprit est la définition et l’utilisation d’erreur. Dans l’analyse stochastique nous calculons une erreur standard, sur la base d’erreurs observées localement en ensuite nous utilisons cette erreur standard, par exemple dans le test t de Student. Dans un réseau neuronal, nous naviguons d’erreur locale en erreur locale, pas à pas et c’est de cette façon que notre intelligence artificielle apprend. Le troisième truc c’est la connexion entre les fonctions d’un réseau neuronal d’une part et deux phénomènes de psychologie collective : l’oubli et l’innovation.

Alors, efficience énergétique. Dans le brouillon d’article auquel je me réfère, j’avais posé l’hypothèse générale que l’efficience énergétique d’économies nationales est significativement corrélée avec les variables suivantes :

  1. Le coefficient de proportion entre l’amortissement agrégé d’actifs fixes et le PIB ; c’est une mesure de l’importance économique relative du remplacement des technologies anciennes par des technologies nouvelles ;
  2. Le coefficient du nombre des demandes nationales de brevet par 1 million d’habitants ; c’est une mesure d’intensité relative de l’apparition des nouvelles inventions ;
  3. Le coefficient de l’offre d’argent comme pourcentage du PIB, soit l’inverse de la bonne vieille vélocité de l’argent ; celui-là, c’est un vieux pote à moi : je l’ai déjà étudié, en connexion avec (i) et (ii), dans un article en 2017 ; comme vous avez pu le suivre sur mon blog, je suis très attaché à l’idée de l’argent comme hormone systémique des structures sociales ;
  4. Le coefficient de consommation d’énergie par tête d’habitant ;
  5. Le pourcentage d’énergies renouvelables dans la consommation totale d’énergie ;
  6. Le pourcentage de population urbaine dans la population totale ;
  7. Le coefficient de PIB par tête d’habitant ;

Bien sûr, je peux développer toute une ligne de réflexion sur les inter-corrélations de ces variables explicatives elles-mêmes. Cependant, je veux me concentrer sur une méta-régularité intéressante que j’avais découverte. Alors, vu que ces variables ont des échelles de mesure très différentes, j’avais commencé par en tirer des logarithmes naturels et c’était sur ces logarithmes que je faisais tous les tests économétriques. Comme j’eus effectué la régression linéaire de base sur ces logarithmes, le résultat vraiment robuste me disait que l’efficience énergétique d’un pays – donc son coefficient de PIB par kilogramme d’équivalent pétrole de consommation finale d’énergie – ça dépend surtout de la corrélation négative avec la consommation d’énergie par tête d’habitant ainsi que de la corrélation positive avec le PIB par tête d’habitant. Les autres variables avaient des coefficients de régression plus bas d’un ordre de magnitude ou bien leurs signifiance « p » selon le test t de Student était plutôt dans l’aléatoire. Comme ces deux coefficients sont dénommés par tête d’habitant, la réduction du dénominateur commun me conduisait à la conclusion que le coefficient du PIB par unité de consommation d’énergie est significativement corrélé avec le coefficient de PIB par unité de consommation d’énergie. Pas vraiment intéressant.      

C’est alors que j’ai eu cette association bizarroïde d’idées : le logarithme naturel d’un nombre est l’exposante à laquelle il faut élever la constante « e » , donc e = 2,71828 pour obtenir ledit nombre. La constante e = 2,71828, à son tour, est le paramètre constant de la fonction de progression exponentielle, qui possède une capacité intrigante de refléter des changement dynamiques avec hystérèse, donc des processus de croissance où chaque épisode consécutif bâtit sa croissance locale sur la base de l’épisode précèdent.

Dans la progression exponentielle, l’exposante de la constante e = 2,71828 est un produit complexe d’un paramètre exogène « a » et du numéro ordinal « t » de la période de temps consécutive. Ça va donc comme y = ea*t . Le coefficient de temps « t » est mesuré dans un calendrier. Il dépend de l’assomption en ce qui concerne le moment originel de la progression : t = tx – t0tx est le moment temporel brut en quelque sorte et t0 est le moment originel. Tout ça c’est de l’ontologie profonde en soi-même : le temps dont nous sommes conscients est une projection d’un temps sous-jacent sur le cadre d’un calendrier conventionnel.

Moi, j’ai utilisé cette ontologie comme prétexte pour jouer un peu avec mes logarithmes naturels. Logiquement, le logarithme naturel d’un nombre « » peut s’écrire comme l’exposante de la constante « e » dans une progression exponentielle, donc ln(x) = a*t. Comme t = tx – t0 , la formulation exacte du logarithme naturel est donc ln(x) = a*(tx – t0). Logiquement, la valeur locale du coefficient exogène « a » dépend du choix conventionnel de t0. C’est alors que j’avais imaginé deux histoires alternatives : l’une qui avait commencé un siècle avant – donc en 1889, vers la fin de la deuxième révolution industrielle – et l’autre qui avait commencé en 1989, après le grand changement politique en Europe et la chute du mur de Berlin.

J’avais écrit chaque logarithme naturel dans mon ensemble des données empiriques dans deux formulations alternatives : ln(x) = a1*(tx – 1889) ou alors ln(x) = a2*(tx – 1989). Par conséquent, chaque valeur empirique « x » dans mon échantillon acquiert deux représentations alternatives : a1(x) = ln(x) / (tx – 1889) et a2(x) = ln(x) / (tx – 1989).  Les « a1 » c’est de l’histoire lente et posée. Mes observations empiriques commencent en 1990 et durent jusqu’en 2014 ; a1(x ; 1990) = ln(x)/101 alors que a1(x ; 2014) = ln(x)/125. En revanche, les « a2 » racontent une histoire à l’image d’une onde de choc qui se répand avec force décroissante depuis son point d’origine ; a2(x ; 1990) = ln(x)/1 pendant que a2(x ; 2014) = ln(x)/25.

J’ai repris la même régression linéaire – donc celle que j’avais effectué sur les logarithmes naturels ln(x) de mes données – avec les ensembles transformés « a1(x) » et « a2(x) ». Je cherchais donc à expliquer de façon stochastiques les changements observés dans « a1(efficience énergétique) » ainsi que « a2(efficience énergétique) » par régression sur les « a1(x) » et « a2(x) » des variables explicatives (i) – (vii) énumérées plus haut. La régression des « a1 » paisibles tire de l’ombre l’importance de la corrélation entre l’efficience énergétique et le pourcentage de population urbaine dans la population totale : plus de citadins dans la population totale, plus efficiente énergétiquement est l’économie du pays. Lorsque je régresse sur les « a2 » en onde de choc faiblissante, la corrélation entre l’urbanisation et l’efficience énergétique gagne en force et une autre apparaît : celle avec l’offre d’argent comme pourcentage du PIB. Plus de pognon par unité de PIB, plus de PIB par kilogramme d’équivalent pétrole consommé.

Ici, j’ai un peu le même doute qu’à chaque fois que je vois une technique stochastique nouvelle, par exemple lorsque je compare les résultats de régression linéaire selon la méthode des moindres carrés avec les mêmes données empiriques traitées avec des méthodes comme GARCH ou ARIMA. Les méthodes différentes de calcul appliquées aux mêmes données de départ donnent des résultats différents : c’est normal. Néanmoins, ces résultats différents sont-ils des manifestations de quelque chose réellement différent ? Ce qui me vient à l’esprit est le concept du cycle Schumpétérien. Dans son livre célèbre intitulé « Business Cycles », l’économiste Autrichien Joseph Aloïs Schumpeter avait formulé la thèse qui depuis s’est bien installée dans les sciences sociales : celle du cycle de changement technologique. Mes résultats de recherche indiquent que les changements d’efficience énergétique forment des corrélations les plus cohérentes avec d’autres variables prises en compte lorsque j’impose une analyse de cycle, avec un moment initial hypothétique. Comment ce cycle est lié aux comportements individuels et collectifs, donc comment puis-je l’étudier comme phénomène d’intelligence collective ? 

Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ? Vous pouvez me contacter à travers la boîte électronique de ce blog : goodscience@discoversocialsciences.com .


[1] Gustavo Naumann et al. , 2015, Assessment of drought damages and their uncertainties in Europe, Environmental Research Letters, vol. 10, 124013, DOI https://doi.org/10.1088/1748-9326/10/12/124013

[2] Alfieri, L., Feyen, L., Dottori, F., & Bianchi, A. (2015). Ensemble flood risk assessment in Europe under high end climate scenarios. Global Environmental Change, 35, 199-212.

[3] Vogt, J.V., Naumann, G., Masante, D., Spinoni, J., Cammalleri, C., Erian, W., Pischke, F., Pulwarty, R., Barbosa, P., Drought Risk Assessment. A conceptual Framework. EUR 29464 EN, Publications Office of the European Union, Luxembourg, 2018. ISBN 978-92-79-97469-4, doi:10.2760/057223, JRC113937

La ville – éponge

Mon éditorial sur You Tube

Je développe sur le concept que je viens d’esquisser dans ma dernière mise à jour en anglais : « Another idea – urban wetlands ». C’est un concept d’entreprise et concept environnementaliste en même temps : un réseau d’étangs et des cours d’eau qui serviraient à la fois comme réserve d’eau et l’emplacement pour un réseau des petites turbines hydrauliques.  Oui, je sais, je n’en ai pas encore fini avec EneFin, le concept financier. Je compte de l’appliquer ici de façon créative. Point de vue mécanique des liquides, l’esquisse de l’idée est la suivante. On a besoin d’une rivière qui sera la source primaire d’eau pour le système. Dans les environs immédiats de cette rivière nous construisons un réseau des cours d’eau et d’étangs. Les étangs jouent le rôle des réservoirs naturels d’eau. Ils collectent un certain surplus d’eau de pluie conduite par la rivière. De cette façon, l’eau de pluie est mise en réserve.

Les cours d’eau connectent la rivière avec les étangs ainsi que les étangs entre eux. Les cours d’eau ont une double fonction. D’une part, ils sont l’emplacement à proprement dit des petites turbines hydrauliques qui produisent l’électricité. D’autre part, ils assurent de la circulation d’eau dans le système afin de minimiser la putréfaction de débris organiques dans les étangs et par la même façon de minimiser l’émission de méthane. Le tout est complété par les cultures d’arbres et arbustes. Ces grosses plantes vertes ont une double fonction aussi. D’une part, leurs racines servent de stabilisateurs pour le sol du système, qui en raison de l’abondance d’eau peut avoir tendance à bouger. D’autre part, ces plantes vont absorber du carbone de l’atmosphère et contrebalancent ainsi les émissions des gaz de putréfaction des étangs.

La façon dont le système entier se présente dépend de la dénivellation relative du terrain. Le design de base c’est dans le terrain plat (ou presque) où la circulation d’eau dans le réseau est forcée par la pression provenant de la rivière. La présence des monts et vallées change le jeu : à part la pression de flux riverain, on peut utiliser les siphons romains pour créer un courant additionnel.

Je sais que dès un système comme celui-là est proposé, l’objection courante est celle à propos des moustiques. Des étangs à proximité d’habitations humaines veulent dire des tonnes de moustiques. L’une des observations pratiques sur lesquelles je me base est que ça arrive de toute façon. Je peux observer ce phénomène chez moi, en Pologne du sud. Année après année, certains endroits progressivement s’imbibent d’eau. Des petits creux de terrains se transforment en des marais microscopiques. Des complexes résidentiels entiers dans les banlieues des grandes villes connaissent des vagues de travaux de rénovation pour renforcer l’isolation hydrophobe des fondements.  Oui, ça arrive déjà et le problème c’est que ça pose que des problèmes, sans retombés positifs niveau accès à l’eau potable. Autant civiliser le phénomène. Ci-dessous, je présente une carte d’Europe Centrale et Méridionale, où les emplacements des vallées fluviales sont marqués.

En plus, on peut de débarrasser des moustiques – ou les rendre, au moins, presque inoffensifs – avec l’aide de la végétation adéquate. J’ai fait un peu de recherche et voilà la liste des plantes qui repoussent les moustiques et qui donc, si plantées abondamment à travers ces structures faites d’étangs et des cours d’eau, peuvent largement résoudre ce problème-là :  la citronnelle (Cymbopogon nardus), la mélisse officinale (Melissa officinalis), la cataire (Nepeta cataria)

le souci officinal (Calendula officinalis), la rose d’Inde (Tagetes erecta), l’œillet d’Inde (Tagetes patula), la Tagète lucida (Tagetes lucida), la Tagète citron (Tagetes tenuifolia), Baileya multiradiata (pas de nom français distinctif, pour autant que je sache), le populage des marais (Caltha palustres), le basilic (Ocimum basilicum), la lavande (famille Lamiacae), la menthe poivrée (Mentha x piperita), l’ail (Allium sativum), la menthe pouliot (Mentha pulegium), le romarin (Rosmarinus officinalis) et finalement les géraniums (famille Geraniums).

Source: https://www.eea.europa.eu/data-and-maps/figures/floodplain-distribution dernier accès 20 Juin 2019

Ah, oui, j’ai oublié : dans un premier temps, je veux étudier la possibilité d’installer tout ce bazar dans l’environnement urbain, quelque chose comme des marais civilisés et citadins, Ça fait plus d’un an que j’ai abordé le sujet des villes intelligentes et ben voilà un concept qui va à merveille. Je veux développer cette idée comme projet de promotion immobilière. Je me suis dit que si je réussis à y donner une forme purement entrepreneuriale, ce sera le test le plus exigeant en termes de faisabilité. Je veux dire que si c’est profitable – ou plutôt s’il y a des fortes chances que ce soit profitable – le concept peut se développer sans aide publique. Cette dernière peut apporter du changement positif additionnel, bien sûr, mais le truc peut se développer par la force des marchés locaux de l’immobilier. Voilà donc que je considère la valeur économique d’un projet comme la valeur actuelle nette du flux de trésorerie. Sur un horizon de « n » périodes, deux choses adviennent : le projet génère un flux de trésorerie, d’une part, et il note un changement de valeur du marché d’autre part. La formule que je présente ci-dessous est une modification de celle présentée par Hatata et al. 2019[1]. À part une notation légèrement modifiée, j’élimine la catégorie séparée des coûts de maintenance des installations et je les inclue dans la catégorie générale des coûts opérationnels. En revanche, si les dépenses sur la maintenance courante des installations sont une compensation de l’amortissement physique et donc s’ils constituent des additions à la valeur brute des biens immobiliers, on les compte comme investissement.  


Je commence l’application empirique de la formule par étudier le marché des terrains de construction en Europe, plus spécialement dans les zones riveraines. Je retourne à la comparaison entre ma ville natale, Krakow, Pologne, où je vis, en Lyon, France, où j’avais passé quelques années autant troublées qu’intéressantes de mon adolescence. Krakow d’abord : 1 mètre carré de terrain de construction, dans la ville-même, coûte entre €115 et €280. À Lyon, la fourchette des prix est plus large et plus élevée : entre €354 et €1200 par m2.

Question : quelle superficie pourrait bien avoir un terrain urbain transformé en ce marécage artificiel ? Question dure à répondre. J’essaie de l’attaquer par le bout aquatique. Ce système a pour une des fonctions de stocker, dans le réseau d’étangs, suffisamment d’eau de pluie pour satisfaire la demande de la population locale et de laisser encore un surplus résiduel. J’ai fait un peu de recherche sur la quantité d’eau consommée dans les ménages. En fait, il y a peu de données claires et sans équivoque sur le sujet. La source qui a l’air d’être la plus sérieuse est AQUASTAT – Système d’information mondial de la FAO sur l’eau et l’agriculture.

Une déconstruction prudente des données publiées par la Banque Mondiale indique que la consommation domestique d’eau en France est d’à peu près 81 ÷ 82 m3 par personne par an, soit entre 81 000 et 82 000 litres. En Danemark, c’est à peu près 59 ÷ 60 m3 par personne par an (59 000 ÷ 60 000 litres) et je n’ai aucune idée où cette différence peut bien venir. J’ai déjà éliminé l’usage non-domestique, au moins selon la structure logique des données présentées par la banque mondiale. En revanche, lorsque j’ai étudié quelques publications polonaises sur le sujet, il paraît que la consommation domestique d’eau est plutôt répétitive à travers l’Europe et elle oscille entre 36 et 40 m3 par personne par an.

Il y a certainement une source de ces disparités : la distinction entre, d’une part, la consommation ménagère strictement comptée, avec des compteurs d’eau associés aux personnes précises et d’autre part, la consommation personnelle totale, y compris l’usage d’eau de puits et d’eau en bouteilles et bidons. Du point de vue hydrologique, chaque endroit sur Terre reçoit une certaine quantité d’eau Ep de précipitations atmosphériques – donc de pluie ou de neige – ainsi qu’à travers des rivières qui apportent l’eau des territoires adjacents. Le même endroit déverse une quantité définie Ed d’eau dans les mers et océans adjacents, à travers les fleuves. Le territoire entier perd aussi une quantité définie Ev d’eau par évaporation. La différence Er = Ep – Ev – Ed est la quantité absorbée par le territoire.

Lorsque nous, les humains, utilisons l’eau dans notre vie quotidienne, la plupart de cette consommation atterrit dans des égouts de toute sorte, qui la conduisent vers et dans le réseau fluvial. Oui, lorsque nous arrosons nos jardins, une partie de cette eau s’évapore, mais la grande majorité de notre consommation d’eau entre dans la composante Ed ci-dessus. Le flux Ed peut être décomposé en deux sous-flux : le flux strictement naturel Ed-n d’eau qui coule tout simplement, ça et là, et le flux Ed-h qui passe à travers l’utilisation humaine. Pour être tout à fait précis, on peut adopter la même distinction pour l’eau d’évaporation, donc Ev = Ev-n + Ev-h.

Le sentier conceptuel préliminairement défriché, je peux passer en revue un peu de littérature. Katsifarakis et al. (2015[1]) décrivent l’application d’une structure urbaine appelée « jardin pluvial » (« rain garden » en anglais). Grosso modo, un jardin pluvial est une agglomération des structures superficielles qui favorisent la collection d’eau de pluie – égouts, puits, arbustes, près humides, étangs ouverts – avec des structures souterraines qui favorisent la rétention de la même eau dans des couches successives du sol. Ici, ‘y a un truc intéressant que l’article de Katsifarakis et al. suggère comme attribut possible d’un jardin pluvial : le drainage inversé. Normalement, les tuyaux de drainage servent à éconduire l’eau de pluie en dehors du terrain donné. Cependant, il est possible d’enfoncer les tuyaux de drainage verticalement, vers et dans les couches profondes du sol, pour favoriser la rétention d’eau de pluie dans des poches souterraines profondes, un peu comme des poches artésiennes. J’ai essayé de présenter l’idée visuellement ci-dessous. Normalement, un étang, ça se creuse jusqu’à ce qu’on arrive à une couche géologique imperméable ou peu perméable. C’est comme ça que l’eau reste dedans. Si en-dessous de cette couche imperméable il y a une nappe perméable et poreuse, capable de retenir de l’eau, une nappe aquifère peut se former dans les roches sous l’étang. L’étang de surface est alors une structure de captage et la rétention proprement dite survient dans l’aquifère sous-jacent. Remarquez, faut faire gaffe avec le drainage renversé et les aquifères. Ça marche bien dans des endroits vraiment plats et naturellement fluviaux, comme dans les plaines riveraines d’une rivière. C’est plat et – grâce au boulot qu’avaient fait les glaciers, dans le passé – ça contient des larges poches sableuses insérées entre des nappes rocheuses imperméables. En revanche, si le terrain est en pente ou bien s’il se termine par une falaise, un aquifère peut provoquer des glissements de terrain gigantesques.  

Alors, voyons voir comment des trucs comme drainage inversé peuvent marcher pour stocker l’eau de pluie ou bien celle d’inondation. Je m’en tiens à mes deux exemples : Krakow en Pologne et Lyon en France. En France, les précipitations annuelles moyennes[1] sont de 867 milimètres par an par mètre carré ; en Pologne, c’est 600 mm. Un milimètre de précipitation par mètre carré veut dire 1 litre, donc 0,001 mètre cube. En France, le mètre carré moyen de territoire collecte donc 0,867 m3 de précipitations annuelles, avec une consommation moyenne ménagère d’environ 81,69 m3 par personne par an. Pour que la personne moyenne aie sa consommation d’eau contrebalancée par le stockage d’eau de pluie, il faut donc 81,69 m3 / 0,867 [m3/m2] = 94,23 m2 de surface de collection d’eau. Ajoutons à ceci un surplus de 20%, à titre de stockage résiduel par-dessus la consommation courante : ceci fait 94,23 m2 * 1,2 = 113,07 m2. En d’autres mots, en France, l’eau de pluie (ou neige) collectée de la surface d’environ 113 ÷ 114 mètres carrés de terrain ouvert exposé directement aux précipitations peut pourvoir, si captée proprement, à la consommation moyenne d’eau d’une personne plus un résidu mis en réserve.

En ce qui concerne la Pologne, même la source la plus exhaustive, donc AQUASTAT de FAO, ne donne pas d’estimation de consommation d’eau par personne. Je vais donc faire un petit tour de maths, prendre les estimations pour la France et les comparer avec un pays voisin à tous les deux, donc l’Allemagne : consommation totale d’eau par personne par an égale à 308,5 mètres cube, dont la consommation ménagère devrait prendre à peu de choses près 20%, soit 62 m3. J’assume donc qu’un Polonais moyen consomme ces 62 m3 d’eau par an, j’y ajoute 20% pour stockage résiduel, ce qui me fait 74,4 m3. Je divise ça par les 0,6 m3 de précipitations annuelles par mètre carré. En fin de compte j’obtiens 124 m2 de surface arrangée en jardin pluvial. Encore une fois, je résume graphiquement.


Je reviens à la revue de littérature. Shao et al. (2018[1]) présentent un concept similaire au mien : la ville – éponge ou « sponge city » en anglais. La ville – éponge absorbe l’eau et le carbone. E plus, grâce à l’absorption de l’eau pluviale, la ville – éponge a besoin de moins d’énergie pour pomper l’eau dans l’infrastructure urbaine et de cette façon une telle structure dégage moins de CO2. La ville – éponge combine la verdure et les jardins pluviaux avec des zones marécageuses, comme le concept que j’essaie de développer. Selon les estimations présentées par Shao et al., la capacité d’absorption de carbone dans des villes – éponges déjà mises en place en Chine est très variable : de 4,49 grammes de carbone par an par mètre carré dans les marécages des plaines du Nord – Est de Chine jusqu’à 56,67 grammes par an par mètre carré dans les marécages des lacs des plaines orientales. Shao et al. présentent une analyse détaillée de la ville de Xiamen. Avec 3,5 millions d’habitants, une surface totale de 1 865 km2 et son infrastructure de ville – éponge couvrant à peu près 118 kilomètres carrés, la ville de Xiamen compte retenir 17,18 millions des mètres cubes d’eau de pluie par an, à travers la technologie des structures – éponge.

Pour donner une image complète, il faut dire que Xiamen note des précipitations tout à fait significatives : 1131 millimètres par an, selon le service Climate-Data.org[2]. Bon, calmons le jeu, parce qu’il y a quelque chose qui cloche dans ces calculs de par Shao et al. J’assume que l’infrastructure de la ville – éponge collecte l’eau de pluie de toute la ville, donc que les 118 km2 de cette infrastructure absorbent l’eau qui tombe sur la surface totale des 1 865 km2 de la ville. Les précipitations annuelles de 1131 millimètres –  donc 1,131 m3 – par mètre carré donnent 1865000 m2 * 1,131 m3/m2 =  2 109 315 m3. Cela voulait dire que selon les calculs de Shao et al. l’infrastructure – éponge de Xiamen absorbe 8 fois plus d’eau de pluie qu’il y a de pluie. Ambitieux mais peu réaliste.  La hydrologie, c’est compliqué. Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ? Vous pouvez me contacter à travers la boîte électronique de ce blog : goodscience@discoversocialsciences.com .


[1] Shao, W., Liu, J., Yang, Z., Yang, Z., Yu, Y., & Li, W. (2018). Carbon Reduction Effects of Sponge City Construction: A Case Study of the City of Xiamen. Energy Procedia, 152, 1145-1151.

[2] https://en.climate-data.org/asia/china/fujian/xiamen-2623/ dernier accès 30 Juin 2019

[1] https://data.worldbank.org/indicator/AG.LND.PRCP.MM dernier accès 30 Juin 2019

[1] Katsifarakis, K. L., Vafeiadis, M., & Theodossiou, N. (2015). Sustainable drainage and urban landscape upgrading using rain gardens. Site selection in Thessaloniki, Greece. Agriculture and agricultural science procedia, 4, 338-347.

[1] Hatata, A. Y., El-Saadawi, M. M., & Saad, S. (2019). A feasibility study of small hydro power for selected locations in Egypt. Energy Strategy Reviews, 24, 300-313.

Ça me démange, carrément

Ces derniers jours, je me suis rendu compte qu’à part ce blog et ces business plans dont la préparation je documente ici, il faut que j’écrive quelque chose de scientifique. Il faut que je pose une hypothèse de nature générale et une méthode de recherche pour la vérifier. Je passe donc en revue les différentes idées qui sont venues dans ma tête durant les 6 – 8 derniers mois. J’ai beaucoup travaillé sur des business plans, donc logiquement le développement scientifique correspondant devrait s’en tenir plutôt à la microéconomie et/ou à la gestion. Vu la direction courante de ces business plans que je prépare, le marché de l’énergie – en combinaison avec les solutions FinTech – semble être le champ empirique privilégié pour cette science que je suis censé présenter.

J’avais découvert, il y a déjà quelque temps, que je suis plutôt empiriste que rationaliste dans ma méthode scientifique. Je regarde autour de moi, je renifle, je tâtonne s’il le faut, et je me fais une idée de ce que j’observe. Petit à petit, je peaufine cette idée jusqu’à ce qu’elle devienne une hypothèse. Une fois ma petite hypothèse en place, je retourne vers la réalité empirique, seulement cette fois de manière plus respectable : je catégorise et je mesure. J’essaie de voir des régularités quantifiables et je reformule mon hypothèse par référence à ces régularités. J’essaie de voir si je peux avancer une hypothèse intelligible que je puisse ensuite accompagner d’une preuve empirique.

Je réassume les observations empiriques que j’ai faites durant ces derniers mois, surtout en ce qui concerne les énergies renouvelables et le FinTech. Tout d’abord, je peux observer comme une vague technologique de miniaturisation dans le secteur des énergies renouvelables. Les moulins à vent, les turbines hydrauliques, même les centrales électriques solaires à chaleur solaire concentrée : tout ce bazar se rétrécit en termes de la taille des formes utilitaires. L’énergétique renouvelable est en train de se démocratiser en termes de taille et de s’adapter à une géographie dispersée. En parallèle à la miniaturisation, une maximisation a lieu, aussi paradoxal que ça puisse paraître. Je suis régulièrement les nouveautés technologiques dans le domaine des énergies renouvelables, par exemple avec https://www.techinsider.com, et je peux remarquer une vague des projets de taille gargantuesque. Dans l’éolien, par exemple, en parallèle au lancement des turbines de taille d’une machine à laver il y a ces turbines géantes que les Ecossais installent en mer.

Lorsqu’une technologie commence à prendre des formes utilitaires de plus en plus variées, cela veut dire son adaptation à la structure sociale, en d’autres mots sa banalisation. C’est une phase cruciale de changement technologique, car l’adaptation devient réciproque : à mesure que la technologie donnée prend des formes de mieux en mieux adaptées aux contextes locaux spécifiques, lesdits contextes changent de forme pour absorber cette technologie de plus en plus vite et avec de plus en plus d’aise. Alors voilà une jolie hypothèse : « Les technologies d’exploitation des sources renouvelables d’énergie sont dans leur phase de banalisation, avec une adaptation de plus en plus poussée et réciproque entre lesdites technologies et les structures sociales qui les absorbent ».

L’hypothèse, elle a beau être jolie, mais ce qu’il me faut c’est ce qu’elle soit empiriquement vérifiable. Sans cet attribut de preuve empirique possible, une hypothèse reste spéculative et selon Milton Friedman, les hypothèses spéculatives, y en a tout un tas et on ne sait pas vraiment quoi en faire. Il se fait que j’ai de l’expérience dans l’étude quantitative des brevets ainsi que des demandes de brevet. Une demande de brevet témoigne qu’un certain effort de recherche et développement avait été mis dans une invention qui, à son tour, est suffisamment originale pour être reconnue comme une nouveauté et pour avoir des chances de devenir une invention brevetée. Le nombre des demandes de brevet en un endroit et temps donné, ainsi que dans un champ spécifique de recherche et développement reflète l’effort relatif.

En revanche, un brevet assigné à une invention témoigne d’une originalité ainsi que d’une priorité temporelle suffisante pour que l’invention donnée reçoive la protection légale en des termes de propriété intellectuelle. Le nombre de brevets octroyés en un endroit et temps donné, dans un champ spécifique de recherche, est une mesure de la quantité des technologies nouvelles et originales à être mises en utilisation.

J’ai bénéficié des bienfaits de ce moteur de recherche de Google – https://patents.google.com– pour se faire une idée empirique de ce processus de banalisation des technologies. J’avais pioché aussi bien les demandes de brevets que les brevets eux-mêmes dans quatre domaines technologiques des énergies renouvelables : l’éolien, l’hydraulique, le photovoltaïque et enfin l’énergie solaire concentrée. Je rappelle que cette dernière c’est le truc des gros miroirs paraboliques qui absorbent la chaleur du soleil et la transforment en chaleur industrielle (vapeur), qui, à son tour, travaille ensuite normalement comme dans une centrale électrique thermique, en propulsant une turbine électrique.

Je me suis concentré sur trois offices des brevets importants dans le monde : l’Office Européen des Brevets (OEB), The US Patent and Trademark Office (USPTO) aux États-Unis, et l’office des brevets de la République Populaire Chinoise (OBC). Voilà le lien hypertexte au fichier Excel avec les résultats de cette excursion empirique. Je sais que certains systèmes, sur des ordinateurs personnels, ont des préjugés en ce qui concerne les fichiers Excel et peuvent bloquer leur affichage ou téléchargement. Pour ceux parmi vous, mes chers lecteurs, dont les systèmes personnels témoignent de cette aversion particulière, je reproduis les tableaux de ce fichier plus loin, en-dessous du texte.

Voilà donc que je peux confronter mon hypothèse avec des faits quantifiables. Je fais une assomption additionnelle : si une banalisation des technologies d’énergétique renouvelable est effectivement en train de survenir, elle est liée à un effort d’innovation. Si une nouvelle variété de turbine hydraulique, par exemple, est prête à être commercialisée, elle va se démarquer, par des détails significatifs, des technologies précédentes. Toutes les innovations dans le domaine ne seront pas forcément soumises aux procédures de brevet, néanmoins un changement substantiel dans le nombre d’inventions qui y sont soumises est une mesure dudit effort d’innovation. La banalisation d’un domaine donné de technologie devrait donc être associée à un nombre accru d’inventions brevetées.

Dans l’éolien, un tel changement est visible et – ce qui est intéressant – il est visible plus au niveau des brevets octroyés qu’au niveau des demandes nouvelles de brevet. On peut voir comme une vague technologique qui continue à monter. C’est tout comme si, ces dernières années, un certain nombre des procédures de brevet ait passé dans la phase de « secouer les rênes » et de mise en exploitation accélérée. Je profite déjà de cette première observation pour attirer votre attention à une différence intéressante entre l’Europe et les États-Unis d’une part et la Chine d’autre part. En Europe et aux États-Unis il y a normalement plus de demandes de brevet que des brevets octroyés : la procédure de brevetage fonctionne comme un tri. Les inventions soumises à la procédure sont sélectionnées et certaines de parmi elles sont éliminées ou bien s’enlisent dans des longs procès légaux en ce qui concerne leur priorité.

En Chine, vous pouvez observer l’inverse : normalement il y plus des brevets octroyés que des demandes déposées. Honnêtement, j’ai un savoir des plus superficiels sur le fonctionnement du système légal chinois et dans ce que je vais avancer je m’appuie sur des cas occasionnels que j’avais étudiés. Apparemment, en Chine, une demande de brevet conduit fréquemment au sciage de l’invention soumise à ladite demande en tout un ensemble des brevets différents. Fréquemment, c’est même une stratégie délibérée de la part d’entités qui sollicitent la protection légale de leurs inventions.

Dans le photovoltaïque, nous pouvons observer quelque chose de similaire à l’éolien : une vague montante des brevets, quoi que dans ce cas, cette vague semble avoir reculé un peu en 2017. Par contre, dans le solaire concentré, je vois une vague d’innovation qui continue à gagner en hauteur. C’est par ailleurs bien ce que je pressentais dans mes os depuis un certain temps : le photovoltaïque s’est un peu essoufflé en termes de changement technologique, pendant que le solaire concentré ne fait que commencer à valser.

Comme je jette un coup d’œil sur l’hydroélectricitéje vois quelque chose de similaire, donc une vague montante de brevets octroyés, mais je vois aussi une autre disparité géographique. L’Europe est systématiquement en recul derrière les États-Unis et la Chine en termes d’intensité de changement technologique dans tous les quatre domaines étudiés ici, mais en termes d’hydroélectricité, ce n’est plus du recul : c’est carrément une capitulation. Ça me révolte quoi que ça ne m’étonne que moyennement. Ça me révolte parce que l’énergie hydraulique, côte à côte avec l’éolien, c’est pratiquement ce qui eût bâti la civilisation européenne entre le 11èmeet le 19èmesiècle. Nous avons, sur ce petit continent montagneux, un réseau fluvial des plus favorables et ça avait été aussi un facteur puissant de succès développemental de la civilisation européenne. Voir tout ce potentiel tellement inexploité en termes d’énergie, ça me démange, carrément.

Tout en étant révolté, je ne suis que moyennement étonné. J’ai déjà rencontré plusieurs opinions critiques quant au développement de l’hydroélectrique en Europe. D’une part, l’exploitation des rivières, au moins pour l’exploitation des turbines hydrauliques, semble être définitivement sur-régulée. Où que nous posions le pied, au bord d’une rivière, il y a des terrains exclus d’exploitation pour des raisons environnementales. J’adore les canards sauvages, mais je déteste cette espèce d’êtres humains sauvages qui excluent d’avance tout compromis entre un gîte des canards et une turbine hydraulique locale.

En plus, le secteur d’énergie en Europe est extrêmement concentré. En dépit de toute la libéralisation de ces trois dernières décennies, nous vivons toujours dans un oligopole poussé et les oligopoles, ça ne favorise pas la banalisation des technologies.

Bon, fini de penser science, pour aujourd’hui. Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund(aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon. Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ?

Tableau 1 – Brevets octroyés et demandes de brevets dans les technologies éoliennes

Année OEB brevets octroyés OEB demandes de brevet déposées USPTO brevets octroyés USPTO demandes de brevet déposées Chine OBC brevets octroyés Chine OBC demandes de brevet déposées
2001 374 1486 2191 3285 2235 1267
2002 550 1585 2323 3381 2386 1768
2003 758 1716 2324 3731 2720 2392
2004 763 1980 2342 4189 3300 3218
2005 722 1969 2138 4499 3673 4076
2006 901 2126 2497 5071 4824 5623
2007 804 2399 2509 5606 6696 6744
2008 857 2749 2481 6229 8640 8787
2009 764 3182 2660 6992 11478 10937
2010 1008 3749 3648 8220 15652 13295
2011 1192 4464 4398 9225 20661 17906
2012 1391 4479 5389 9488 27254 22090
2013 1666 4260 6051 9774 33328 26225
2014 1659 4643 7194 10078 35338 31693
2015 2099 4395 7375 9993 48821 40055
2016 3048 2734 7813 8355 56485 45724
2017 3273 814 8988 4957 62516 41857

 

Tableau 2 – Brevets octroyés et demandes de brevets dans les technologies hydroélectriques

Année OEB brevets octroyés OEB demandes de brevet déposées USPTO brevets octroyés USPTO demandes de brevet déposées Chine OBC brevets octroyés Chine OBC demandes de brevet déposées
2001 21 73 91 161 249 172
2002 19 72 81 159 259 191
2003 38 81 102 221 331 295
2004 35 122 111 224 344 363
2005 21 110 107 254 411 446
2006 40 125 108 333 462 614
2007 20 150 106 451 735 751
2008 41 221 146 569 966 1041
2009 29 241 127 707 1269 1314
2010 55 331 243 652 1836 1437
2011 48 377 327 774 2396 1948
2012 69 394 348 618 2977 2589
2013 86 365 421 643 3541 3001
2014 85 343 521 592 3727 3246
2015 144 349 498 465 5656 4057
2016 197 186 482 304 5890 4870
2017 207 69 603 2 6229 4280

 

Tableau 3 – Brevets octroyés et demandes de brevets dans les technologies photovoltaïques

Année OEB brevets octroyés OEB demandes de brevet déposées USPTO brevets octroyés USPTO demandes de brevet déposées Chine OBC brevets octroyés Chine OBC demandes de brevet déposées
2001 541 2214 3000 4704 1099 1280
2002 752 2263 3062 4972 1413 1770
2003 1010 2469 3219 5489 1831 2540
2004 1015 2834 3256 6421 2149 3177
2005 892 3427 2973 7086 2519 4099
2006 1137 3936 3554 8314 3139 5499
2007 988 4359 3496 9144 4661 7424
2008 1111 5063 3620 10342 6347 9235
2009 1043 6022 4089 12082 9001 12890
2010 1365 6856 5882 14541 13550 17161
2011 1587 7135 6804 16800 20681 21771
2012 1836 6872 8637 16624 28039 26413
2013 2073 6889 10158 17512 34288 29462
2014 2159 6679 12287 17278 30017 30250
2015 2440 6853 12824 16809 43855 35899
2016 3884 3775 13444 14005 53246 40760
2017 4242 859 14973 8815 55365 35507

 

Tableau 4 – Brevets octroyés et demandes de brevets dans la technologie solaire concentrée

Année OEB brevets octroyés OEB demandes de brevet déposées USPTO brevets octroyés USPTO demandes de brevet déposées Chine OBC brevets octroyés Chine OBC demandes de brevet déposées
2001 116 559 702 1154 69 293
2002 168 622 767 1191 115 389
2003 223 639 761 1409 183 544
2004 240 722 679 1613 298 694
2005 191 876 672 1893 324 1003
2006 254 1084 756 2209 396 1308
2007 224 1222 761 2548 621 1629
2008 252 1576 728 3055 791 2262
2009 269 1849 881 3670 1149 3316
2010 344 2153 1412 4367 1762 4460
2011 409 2143 1758 5103 2651 5540
2012 476 2092 2241 5017 3640 6177
2013 533 1925 2726 5142 4155 6323
2014 638 1843 3375 5055 4208 6348
2015 693 1815 3610 4896 6102 7741
2016 1080 958 3682 3699 7557 7771
2017 1218 152 3929 2400 7723 5862