De la misère, quoi

 

Mon éditorial sur You Tube

 

Je reviens vers ma recherche sur le marché d’énergie et – pour la n-ième fois – j’essaie de formaliser de façon scientifiquement rigoureuse mon concept EneFin, donc celui de solution financière pour promouvoir le développement d’énergies renouvelables. L’année dernière, j’avais déjà beaucoup tourné autour du sujet et il y a un je ne sais quoi d’obscur, là. Quelque chose qui me bloque intellectuellement. Vous pouvez consulter, par exemple, « Alois in the middle » pour en savoir plus sur mes contorsions conceptuelles à ce sujet.

Alors, une approche de plus. J’ouvre de façon canonique, par les prémisses, donc par les raisons pour quiconque de ne pas s’en foutre éperdument de tout ce bazar. Dans un rapport sur le secteur d’énergie, publié par IRENA (International Renewable Energy Agency), deux observations me donnent un peu de démangeaison (économique). D’une part, le coût de génération d’énergies renouvelables, le soi-disant LCOE (Levellized Cost of Electricity), a chuté abruptement ces dernières années. D’autre part, l’investissement en des nouvelles capacités de génération en renouvelables a chuté aussi. Les énergies renouvelables ont la particularité de ne coûter rien en tant que telles ; ce qui coûte du pognon c’est la mise en place et la maintenance des technologies. Voyez « Ce que le prof en moi veut dire sur LCOE » pour en savoir plus. De tout en tout, les technologies d’énergies renouvelables ont l’air d’entrer dans la phase de banalisation. La technologie coûte de moins en moins, elle perd de valeur de plus en plus vite, et son produit final est de plus en plus bon marché aussi. D’autre part, les marchés bien structurés d’énergie ont une tendance à développer deux zones de prix : ceux relativement bas pour les gros consommateurs institutionnels et ceux plus élevés pour les petits consommateurs individuels (ainsi que petits institutionnels). Vous pouvez consulter « Deux cerveaux, légèrement différents l’un de l’autre »  pour en savoir plus.

Il y a un autre truc, qui commence à se dessiner dans ma recherche récente. Le développement quantitatif du secteur d’énergie en général semble prendre lieu plutôt en des chocs abrupts de court terme qu’en des tendances longues. A ce sujet précis, j’ai pondu récemment un article et j’essaie de convaincre quelqu’un que ça a du sens. Ce brouillon est intitulé « Apprehending Energy Efficiency ».

Je continue canonique, toujours. L’objectif de ma recherche est de mettre au point un mécanisme de financement des petites installations locales d’énergies renouvelables, qui utiliserait précisément ces deux phénomènes : la disparité des prix, qui se manifeste à mesure que le marché se développe et se structure, et la prédisposition de l’industrie à réagir aux chocs plutôt qu’à des stimuli gentils et patients. Mon hypothèse de travail est que la disparité observable dans les prix d’énergie peut être utilisée pour créer des chocs financiers contrôlés et locaux, qui à leur tour peuvent stimuler le développement desdites petites installations locales.

La méthode générale pour l’exploration et la vérification de cette hypothèse consiste à tester, sous plusieurs angles différents, un schéma financier qui exploite, précisément, la disparité des prix. Un fournisseur local d’énergie vend une certaine quantité Q d’énergie à des consommateurs tout aussi locaux à un prix relativement élevé, le PA, typique pour le marché des petits consommateurs, mais il la vend en paquets complexes, qui contiennent de l’énergie strictement dite, au prix PB, relativement bon marché, normalement réservé aux gros consommateurs industriels, plus des titres participatifs dans le capital du fournisseur. Ces titres participatifs représentent un ensemble des droits aux actifs du fournisseur et la valeur comptable de ces droits est K. La valeur-marché de l’énergie vendue est de Q*PB = E. La marge agrégée Q*(PA – PB), crée par la vente de la quantité Q d’énergie, est donc équivalente à du capital K investi dans le bilan du fournisseur d’énergie. Logiquement, la valeur-marché que l’énergie Q aurait aux prix petit consommateur PA est égale à la somme du capital K et de la valeur-marché E. Dans les équations ci-dessous je donne l’idée générale.

 

Q*(PA – PB) = K

Q*PB = E

Q*PA = K + E

PA > PB

PB  ≥  LCOE

Mon idée suivante est d’explorer les conditions de faisabilité de ce schéma financier, ainsi que de l’optimiser. La structure générale du coût de production d’énergie, donc du LCOE, dit que la quantité d’énergie produite est une fonction du capital investi dans les capacités de production. Le capital K dans mes équations demeure dans une certaine proportion au capital I investi dans les actifs productifs. Par conséquent, K a une influence fonctionnelle sur Q et c’est ainsi que la fonction f1, telle que f1(K) = Q, entre dans le jeu. La même structure logique du LCOE suggère que les prix d’énergie sont des manifestations de la façon dont le capital K est utilisé, puisqu’ils dépendent du coefficient K/Q et en même temps ils dépendent de la structure compétitive du marché ainsi que de sa structure institutionnelle. Seulement ça, ce serait trop simple. La logique Keynésienne suggère que ça marche aussi dans le sens inverse : le capital I investi dans la capacité de production, ainsi que sa fraction K collectée à travers le schéma financier que je viens d’esquisser dépendent toutes les deux des prix et des quantités produites d’énergie.

J’ai donc là un joli petit nœud logique : des variables qui dépendent mutuellement l’une de l’autre. Voilà aussi une belle occasion de faire un pas de plus hors de ma caverne d’économiste classique Smithonien et se tourner vers l’intelligence artificielle et les réseaux neuronaux. J’assume donc que le secteur d’énergie est une structure intelligente qui est capable de s’adapter aux impératifs de la civilisation humaine – survivre et avoir accès à Netflix – et cette adaptation peut se faire à travers deux chemins qu’emprunte toute intelligence digne de ce nom : expérimentation et abstraction.

J’imagine donc une structure intelligente plus ou moins conforme à ces équations là-dessus. Ce que je veux c’est une fourniture abondante d’énergie renouvelable. « Abondante » est un aspect de la chose, « renouvelable » en et une autre. En ce qui concerne l’abondance d’énergie, la consommation finale annuelle par tête d’habitant, fréquemment mesurée en kilogrammes (ou bien en tonnes) d’équivalent pétrole, semble être une mesure à forte assise empirique. Je structure cette abondance relative en deux types : renouvelable et non-renouvelable. Ici, je répète une remarque à propos de cette classification, une remarque que j’avais déjà faite dans « Les 2326 kWh de civilisation » : formellement, lorsqu’on brûle des bio-fuels, comme de la paille ou de la sciure de bois, c’est du renouvelable dans le sens que ce n’est ni du fossile ni de la fission nucléaire. Encore, faut venir là où j’habite, moi, pour comprendre que ce type précis de renouvelable n’est pas précisément soutenable à la longue. Vous voulez littéralement voir ce que vous respirez, sans être capable de voir grand-chose d’autre ? Eh bien, venez à Krakow, Pologne, en saison de chauffage. Vous verrez par vous-mêmes ce que veut dire l’usage abondant des bio-fuels.

En tout cas, ma structure intelligente distingue deux sous-catégories de Q (je sais, le jeu de mots, avançons SVP) : QR/N pour la consommation d’énergie renouvelable par tête d’habitant et QNR/N pour les non-renouvelables par la même tête d’habitant. Enfin, pas tout à fait la même, puisque la tête d’habitant qui roule sa vie sur les renouvelables démontre, très probablement, des schémas de comportement différents de celle qui s’en tient encore aux fossiles lorsqu’il s’agit d’alimenter le frigo. Je veux QR/N et mettre le QNR/N gentiment en veilleuse, juste en cas où une autre glaciation serait à venir et il y aurait besoin de chauffer la planète, juste un tantinet.

En tout cas, j’ai deux variables de résultat : [QR/N] et [QNR/N]. Ma structure intelligente peut suivre quatre sentiers alternatifs de changement. Le plus désirable des quatre est celui où [QR/N] croît et [QNR/N] décroit, en corrélation négative. Par ordre de désirabilité, le second sentier est celui de Les trois autres sont les suivants : i) [QR/N] décroit et [QNR/N] croît en corrélation négative ii) [QR/N] et [QNR/N] décroissent tous les deux et enfin le cas iii) où [QR/N] et [QNR/N] croissent en concours.

Mes variables d’entrée sont tout d’abord les prix d’énergie PA et PB, possiblement sous-catégorisés en des prix d’énergie renouvelable et non-renouvelable. L’un des trucs que je voudrais voir joliment simulé par un réseau neuronal est précisément ce « possiblement sous-catégorisés ». Quel sentier d’essai et erreur conduit à la convergence entre les prix de renouvelables et celui des fossiles ? Quel autre sentier peut conduire vers la divergence ? Quelles fourchettes de convergence ou divergence peuvent apparaître le long de ces sentiers ? Quelle relation avec le LCOE ? Voilà des choses intéressantes à explorer.

Deux autres variables d’entrée sont celles pertinentes au capital : le capital I investi dans la capacité productrice et son sous-ensemble K, collecté à travers le schéma financier que j’ai présenté quelques paragraphes plus tôt.

Somme toute, voilà que j’atterris avec deux tenseurs : celui de résultat TS et celui d’entrée TE. Le tenseur d’entrée se décompose comme TE = [(LCOER), [(LCOENR), (KR), (KNR), (IR), (INR), (PA;R), (PA;NR), (PB;R), (PB;NR)] et celui de résultat c’est TS = [(QR/N), (QNR/N)]. L’action niveau TE produit un résultat niveau TS. Un réseau neuronal peut connecter les deux tenseurs à travers deux sortes de fonction : expérimentation et abstraction.

L’expérimentation, ça peut prendre lieu à travers un perceptron à couches multiples. Je reprends le même, simple algorithme que j’avais déjà mentionné dans « Ce petit train-train des petits signaux locaux d’inquiétude ». Je prends donc mes deux tenseurs je crée un premier ensemble de valeurs empiriques, une valeur par variable. Je les standardise dans l’intervalle entre 0 et 1. Cela veut dire que le prix (PB;R), par exemple, est exprimé comme le pourcentage du prix maximal observé dans le marché. Si j’écris PB;R = 0,16, c’est un prix local qui est égal à 16% du prix maximal jamais observé dans ce marché précis. D’autres variables sont standardisées de la même façon.

Maintenant, je fais une chose peu usuelle – pour autant que je sache – dans l’application des réseaux neuronaux. La pratique normale est de donner à notre algorithme un ensemble de données aussi large que possible dans la phase d’apprentissage – pour découvrir des intervalles les plus plausibles pour chaque variable – et ensuite optimiser le modèle sur la base de cet apprentissage. Moi, je veux observer la façon dont le perceptron va apprendre. Je ne veux pas encore optimiser dans le sens strict du terme.

Je prends donc ce premier ensemble des valeurs empiriques standardisées pour mes deux tenseurs. Les voilà, dans Tableau 1, ci-dessous :

 

Tableau 1

Tenseur Variable Valeur initiale standardisée
TE  LCOER         0,26
 LCOENR         0,48
 KR         0,56
 KNR         0,52
 IR         0,46
 INR         0,99
 PA;R         0,71
 PA;NR         0,46
 PB;R         0,20
 PB;NR         0,37
TS  QR/N         0,95
 QNR/N         0,48

 

La situation initiale que je simule est donc celle, où la consommation d’énergie renouvelable par tête d’habitant QR/N est près du maximum empiriquement observable dans le secteur, pendant que la consommation des non-renouvelables QNR/N est à peu près à la moitié (48%) de son max respectif. Les prix avantageux d’énergie, réservés aux grands consommateurs, sont respectivement à PB;R = 20% et PB;NR = 37% de leurs maximums observables. Les prix plus élevés, normalement payés par les petits utilisateurs, y compris les ménages, sont à PA;R = 71% du max pour les renouvelables et PA;NR = 46% pour les non-renouvelables. Les marges initiales PA – PB sont donc respectivement à PA;R – PB;R = 71% – 20% = 51% pour les renouvelables et  PA;NR – PB;NR = 46% – 37% = 9% en ce qui concerne les non-renouvelables.

Voilà donc un marché initial où une demande relativement élevée pour les énergies renouvelables crée une fourchette des prix particulièrement défavorable pour ceux parmi les petits clients qui veulent ne consommer que ce type d’énergie. En même temps, les non-renouvelables sont un peu moins en demande et par conséquent la même fourchette des prix PA – PB est beaucoup plus étroite dans leur cas.

Les quantités de capital collectées à travers des plateformes de financement participatifs, donc mes K, sont à KR = 56% du max pour les fournisseurs d’énergies renouvelables et KNR = 52% dans le marché des non-renouvelables. Maintenant, je reviens à mon modèle, plus particulièrement à l’équation Q*(PA – PB) = K. Avec les quantités et les prix simulés ici et avec l’assomption de population N = constante, KR devrait être à QR*(PA;R – PB;R) = 0,95*(0,71 – 0,2) = 0,4845, pendant que la valeur initiale arbitraire est de 0,56. Les renouvelables sont donc légèrement sur-financées à travers le mécanisme participatif. Pour les non-renouvelables, le même calcul se présente comme KNR = QNR*(PA;NR – PB;NR) = 0,48*(0,46 – 0,37) = 0,0432 donc bieeeen en-dessous du KNR = 52% fixés arbitrairement comme valeur initiale. Si les renouvelables sont légèrement sur-financées, les non-renouvelables nagent carrément dans du pognon déséquilibré.

En ce qui concerne l’investissement I en capacités productives, il est initialement fixé à IR = 0,46 pour les renouvelables et INR = 0,99 pour les non-renouvelables. Les renouvelables sont donc clairement sous-investis, pendant que les fossiles et les fissions nucléaires sont gâtés en termes d’actifs productifs.

Les coûts de production d’énergie, donc les LCOE, sont peut-être les plus durs à exprimer en valeurs standardisées. En effet, lorsqu’on observe la signification économique du LCOE, la façon dont ça bouge semble avoir plus d’importance que la façon do ça se tient en place. Les valeurs initiales que j’ai fixées, donc LCOER = 0,16 et LCOENR = 0,48 sont une tentative de recréer la situation présente dans le secteur de l’énergie, où le LCOE des renouvelables plonge carrément, la tête en avant, pendant que le LCOE des non-renouvelables suit une trajectoire descendante quoique beaucoup plus respectable dans sa descente.

Alors, mon petit perceptron. Il est fait de juste deux neurones, l’un après l’autre. Le premier o l’affaire directement au stimuli du tenseur d’entrée TE = [(LCOER), [(LCOENR), (KR), (KNR), (IR), (INR), (PA;R), (PA;NR), (PB;R), (PB;NR)] et il attribue à chaque variable de ce tenseur un coefficient de pondération. C’est comme ces neurones superficiels connectés à notre appareil sensoriel, qui décident s’il est plus important de s’occuper de cette grosse tâche brune qui grandit très vite (l’ours grizzly qui charge sur moi) ou bien de ce disque lumineux qui tourne progressivement de l’orange vers le jaune (soleil dans le ciel).

Je ne sais pas comme vous, mais moi, je m’occuperais plutôt de l’ours. Il a l’air comme un peu plus pressant, comme stimulation sensorielle. Encore que ce neurone de première couche, il a de la liberté d’expérimenter avec l’importance relative des choses. Il attribue des coefficients aléatoires de pondération à chaque variable du tenseur TE. Il produit un cocktail d’information de la forme : TE(transformé) = [(LCOER)*p1 + (LCOENR)*p2 + (KR)*p3 + (KNR)*p4 + (IR)*p5 +  (INR)*p6 + (PA;R)*p7 + (PA;NR)*p8 + (PB;R)*p9 + (PB;NR)*p10. Les « pi » sont précisément les coefficients de pondération que le premier neurone attribue aux variables d’entrée.

Le second neurone, qui consulte le premier neurone en matière de ce qui se passe, c’est l’intello du lot. Il dispose d’une fonction de transformation neuronale. Elle est basée, en règle générale, sur la fonction exponentielle. Le tenseur TE(transformé) produit par le premier neurone est tout d’abord mis en négatif, donc « – TE(transformé) » et ce négatif est ensuite mis en exposant de la constante e = 2,72 etc. On tourne donc autour de e – TE(transformé) . Ceci fait, l’intello a deux façons usuelles d’en faire un usage cognitif : en sigmoïde ou bien en tangente hyperbolique. Je viens de découvrir que cette distinction a de l’importance, dans ce cas précis. J’y reviendrai plus tard. En tout cas, cette fonction de transformation – sigmoïde ou tangente hyperbolique – sert à produire une valeur hypothétique des variables de résultat, donc du tenseur TS = [(QR/N), (QNR/N)]. Ceci fait, le neurone intello calcule la dérivée locale de ce résultat hypothétique ainsi que la déviation dudit résultat par rapport aux valeurs originales TS = [(QR/N) = 0,95 ; (QNR/N) = 0,48]. La dérivée multipliée par la déviation donne une erreur locale. La somme de ces erreurs locales en ensuite transmise au premier neurone, ce concierge à l’entrée du système, avec la commande « Ajoute ça, s’il te plaît, aux valeurs initiales du TE, puis transforme le une nouvelle fois et donne-moi la nouvelle valeur TE(transformé) ».

Ça se répète, encore et encore. J’ai opté pour 5000 tours de cet encore et j’ai observé le processus d’apprentissage de mes deux neurones. Plus précisément, j’ai observé la valeur de l’erreur cumulative (donc sur les deux variables de résultat) en fonction du temps d’apprentissage. Voilà que la première différence saute aux yeux en ce qui concerne la fonction neuronale appliquée. Je la présente sous forme de deux graphes, ci-dessous. Si le neurone intello de la famille utilise la fonction sigmoïde, le processus d’apprentissage tend à réduire l’erreur expérimentale plutôt vite, pour osciller ensuite dans un intervalle beaucoup plus petit. C’est un schéma du type « un choc suivi par une adaptation progressive ». En revanche, la tangente hyperbolique apprend à travers la création délibérée des chocs impressionnants, entrecoupés par des longues périodes d’accalmie.

 

Voilà donc deux sentiers d’apprentissage très différents et ils produisent des résultats très différents. Tableau 2, ci-dessous, présente les valeurs apprises par les deux versions de mon réseau. Le sigmoïde conseille de pomper la valeur relative de toutes les variables d’entrée, pendant que la tangente hyperbolique est d’avis que la seule variable du TE digne de maximisation est l’investissement en capacité productrice des non-renouvelables pendant que le reste, faut les discipliner. Le plus intriguant c’est les valeurs négatives de LCOER et de PB;R. Pour LCOER = – 0,11 cela veut probablement dire soit une stimulation fiscale forte, soit une situation où les fournisseurs d’énergies renouvelables vendent leurs actifs productifs en masse. Le PB;R = – 0,19 c’est sans doute un appel à la stimulation fiscale des prix d’énergie renouvelable.

Voilà donc que le sigmoïde devient libéral et la tangente hyperbolique tourne en étatiste – interventionniste. Encore un petit test avec l’équation Q*(PA – PB) = K. Les valeurs conseillées par le sigmoïde libéral donnent  QR*(PA;R – PB;R) = 0,95*(0,90 – 0,73) = 0,1615 et QNR*(PA;NR – PB;NR) = 0,48*(0,82 – 0,79) = 0,0144 , contre les K appris indépendamment comme KR = 0,85 et KNR = 0,84. Le sigmoïde libéral veut donc monétiser significativement le secteur d’énergie. Plus de capital liquide veut dire plus de flexibilité et un cycle de vie beaucoup plus court en ce qui concerne les technologies en place.

La tangente hyperbolique interventionniste préconise QR*(PA;R – PB;R) = 0,95*[0,56 – (-0,19)] = 0,7125 et QNR*(PA;NR – PB;NR) = 0,48*(0,19 – 0,06) = 0,0624 contre KR = 0,34 et KNR = 0,28. Définitivement moins de pognon collecté à travers du crowdfunding. De la misère, quoi.

 

Tableau 2

Tenseur Variable Valeur initiale standardisée Valeur apprise par le réseau basé sur la fonction sigmoïde Valeur apprise par le réseau basé la tangente hyperbolique
TE  LCOER         0,26         0,75       (0,11)
 LCOENR         0,48         0,83         0,23
 KR         0,56         0,85         0,34
 KNR         0,52         0,84         0,28
 IR         0,46         0,82         0,19
 INR         0,99         1,00         0,98
 PA;R         0,71         0,90         0,56
 PA;NR         0,46         0,82         0,19
 PB;R         0,20         0,73       (0,19)
 PB;NR         0,37         0,79         0,06
TS  QR/N         0,95    
 QNR/N         0,48    

 

Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ?

De la jugeotte artificielle

Mon éditorial sur You Tube

 

J’essaie de trouver des points communs entre ma recherche sur le marché de l’énergie et sur le concept d’entreprise que j’ai baptisé EneFin , d’une part, et le contenu éducatif d’autre part. La session d’examens, celle d’hiver, approche et je veux donner à mes étudiants un peu de contenu utile, tout en restant dans le flot de ma recherche.

Ledit flot de recherche a l’air comme un tout petit peu plus pressant, donc je cède. Je suis en train de faire un petit voyage dans le royaume de l’intelligence artificielle, afin de cueillir la fleur de sagesse qui me permettra de comprendre le phénomène d’intelligence collective chez nous, les êtres humains, ainsi que la déclinaison spécifique de cette intelligence collective dans le domaine de l’énergie. Je prends un petit détour sur ce chemin pour réfléchir, une fois de plus, sur le sujet des villes intelligentes. L’un des phénomènes les plus marqués dans la transition vers les énergies renouvelables est le rôle des villes. Les communautés urbaines deviennent des joueurs actifs dans cette transition énergétique et c’est une activité qui, je pense, est sans précèdent depuis le début du Moyen Age. Les villes font des transitions technologiques plus audacieuses que les grandes sociétés multinationales.

Je veux comprendre ce phénomène. J’approche la gestion, y compris la gestion d’une communauté urbaine, comme une manifestation d’intelligence collective. Pour comprendre le phénomène d’intelligence collective, j’apprends les rudiments d’intelligence artificielle (voir « Ce petit train-train des petits signaux locaux d’inquiétude » par exemple). C’est le sentier de recherche qui se définit comme intelligence artificielle générale. Tu veux comprendre comment marche une bagnole, je veux dire comprendre à fond ? Eh bien, bâtis-en une. Même chose pour la jugeotte : si je veux comprendre comment ça marche, être intelligent, je peux gagner en compréhension en essayant de faire une jugeotte artificielle.

Mon premier pas de compréhension réfère aux soi-disant perceptrons, donc aux réseaux neuronaux qui imitent aussi étroitement que possible le fonctionnement des neurones réels. Un perceptron est une structure logique qui produit un grand nombre d’instances locales d’elle-même et en faisant de la sorte, elle produit des petites erreurs (adaptations imparfaites) locales qui fournissent des informations pour apprentissage futur. Après un grand nombre d’itérations, un perceptron produit un modèle de réalité qui, à son tour, permet de prendre des décisions rationnelles.

Je viens d’utiliser le concept de perceptron pour inventer un mécanisme financier pour stimuler le développement intelligent d’une communauté urbaine. Bon, je sais, il faut que j’explique d’abord le concept de développement intelligent tel que je le comprends. Eh bien, c’est un développement façon perceptron : au lieu de créer et mettre en place une stratégie parfaitement cohérente, le genre qui a l’air bien dans une présentation Power Point, je développe une structure qui permet de mettre en place plusieurs solutions locales dont chacune est une expérimentation en soi. Il y a des trucs, dans le développement urbain, où quoi qu’on fasse, on avance à tâtons. C’est particulièrement vrai pour l’interaction entre une technologie et une population. Il y a ce phénomène désigné comme « déterminisme technologique ». Une technologie nouvelle et une structure sociale sont comme deux nuages : elles s’enveloppent en s’interpénètrent mutuellement. Lorsque nous introduisons une technologie nouvelle comme une infrastructure urbaine, la façon exacte dont ça marche est très dure à prédire et la même façon exacte a une importance capitale pour la viabilité économique de cette infrastructure. Au lieu d’essayer de le prédire nous pouvons expérimenter avec. Un mécanisme de développement intelligent est une structure capable de produire plusieurs petites expérimentations locales, par exemple sous forme d’un grand nombre d’entreprises startups relativement petites qui vont inévitablement commettre des erreurs et apprendre sur la base de ces erreurs.

Au lieu donc de créer une grande société infrastructurelle urbaine, on peut créer un mécanisme financier qui facilite la création des petites entreprises façon startup.  Ça marche pour des technologies aisément subdivisées en des projets locaux, par exemple des réseaux électriques intelligents de basse ou moyenne tension. En revanche, l’idée est hautement discutable pour des technologies qui requièrent beaucoup de coordination sur un territoire étendu, comme des réseaux de transport urbain. Nous pouvons aisément expérimenter avec des systèmes locaux de fourniture d’énergie à partir des turbines à vent ou à l’eau, pendant qu’il serait risqué de créer plusieurs petites startups locales pour un nouveau réseau ferroviaire. Toutefois, risqué ne veut pas dire impossible. C’est précisément là que réside tout le panache de développement intelligent : une expérimentation bien sécurisée côté risque peut apporter des solutions dont nous n’avions même pas soupçonné l’existence.

Alors, la finance. Les conseils municipaux ont fréquemment dans leurs budgets une catégorie de dépenses appelée « développement » ou bien « promotion et communication du développement » etc. Vous comprenez : c’est du pognon qu’on peut dépenser sur des trucs des plus fous, comme des stylos fluorescents avec le logotype de la ville imprimé dessus et encore, ça, c’est du timide et du pondéré en termes de la communication autour du développement.

Mon idée est de prendre comme 50% de ce fonds de développement et les investir dans le capital social d’un fonds strictement dit, que j’appelle provisoirement « le fonds de développement intelligent ». Si je fais un acronyme direct de cette appellation, ça fait FDI, donc le même qui désigne investissements étrangers directs en anglais (Foreign Direct Investment), je vais donc vers un acronyme syllabique : FODIN. Le FODIN est un fonds d’assurance : il garantit le capital social des startups locales en échange des primes d’assurance payées par celles-ci.

Assumons – conformément à ce qu’annonce le rapport intitulé « The 2017 Global Startup Ecosystem Report » – que le capital social initial d’une startup est égal, en moyenne, à €80 000 et que le coefficient de mortalité des startups est d’à peu près 30% sur les deux premières années d’exercice. Dans un ensemble de 100 startups il est donc pratiquement certain que 30 de parmi elles déposeront leurs bilans durant les deux premières années d’activité, ce qui veut dire 30 * €80 000 = €2 400 000 de capital social potentiellement perdu. Si je disperse cette perte agrégée sur l’ensemble entier de 100 startups, ceci fait €24 000 de prime d’assurance faillite qu’une startup paie au FODIN, en échange d’une garantie sur 100% du capital social engagé dans l’affaire.

Voilà donc un FODIN local qui dispose de €5 000 000 et qui engage à peu près 50% de cette somme dans les garanties pour les startups, les autres 50% demeurant libre de toute créance, conditionnelle ou pas. Tout ce capital social est investi en des actifs financiers à bas risque, genre obligations souveraines. Chaque année, ce FODIN paie entre €1 200 000 et €2 400 000 en dommages et intérêts aux actionnaires des startups en faillite (le taux de mortalité de 30% c’est sur deux ans), et reçoit €2 400 000 en primes d’assurance faillite. De tout en tout, notre petit FODIN local peut accumuler du capital à un taux d’à peu près 9% par an. En nombres absolus, 9% * €5 000 000 = €450 000 de plus, chaque année, ce qui veut dire, à son tour, €450 000 / €80 000 = 5 ÷ 6 startups locales de plus, à assurer contre la faillite.

Si nous transformons une dépense budgétaire locale en un fonds financier censé de réduire le risque d’expérimentation avec des business locaux, on peut produire un mécanisme de développement intelligent et ce mécanisme est capable de gérer son propre développement intelligent. ‘ttendez, c’est pas tout. L’autre partie de ce tout est une plateforme de financement participatif type « crowdfunding », où les startups locales, aussi bien que le FODIN, peuvent chercher du capital. Comme je passe en revue des différentes plateformes de crowdfunding, elles ont une faiblesse majeure : les titres participatifs qui y circulent ont peu de liquidité. Dans un réflexe tout à fait naturel, les participants du crowdfunding essaient de contourner les régulations légales en ce qui concerne la traite des valeurs financières, mais il y a un prix à payer pour cette absence d’entrave légale et ce prix est une entrave financière. L’histoire des marchés financiers est très claire sur ce point : si nous voulons un marché financier de prendre vraiment son envol, il faut que les droits et créances financières vendues sur ce marché soient aussi négociables que possible. Lorsqu’une participation type crowdfunding ne se traduit pas en un actif négociable, donc lorsque je ne peux pas la vendre quand je veux, ça bloque énormément.

Moi, je propose donc de liquéfier quelque peu cette plateforme de crowdfunding avec une cryptomonnaie interne. L’entité gérante de la plateforme émet une cryptomonnaie, suivant un algorithme plus ou moins déterministe du type « preuve d’enjeu » (« proof of stake » en anglais), donc sans compétition computationnelle au niveau de l’extraction. Lorsque j’investis via cette plateforme, j’ai le choix entre l’achat direct des titres participatifs d’entreprises où bien l’achat d’unités de cette cryptomonnaie d’abord, et l’échange de ces valeurs virtuelles contres des titres de participation ensuite. La cryptomonnaie en tant que telle est librement négociable à l’intérieur de la plateforme de crowdfunding, y compris des rachats occasionnels par l’entité émettrice elle-même.

On peut pomper cette liquidité même plus si on introduit des soi-disant « fixings » du taux d’échange de la cryptomonnaie interne en des valeurs financières « officielles » : euros, dollars etc. Les fixings apportent de la confiance, et la possibilité de négocier à l’intérieur du système, sans échanger la cryptomonnaie en quoi que ce soit d’autre, offrent la possibilité d’accomplir plusieurs transactions avec relativement peu d’argent « réel ».

Voilà donc comment l’étude des réseaux neuronaux du type perceptron conduit à formuler une nouvelle approche de stratégie de développement socio-économique. Au lieu de formuler un plan d’action traditionnel, nous créons des conditions pour l’expérimentation orientée sur les objectifs stratégiques généraux ainsi que des mécanismes de réduction de risque lié à chaque expérience particulière. Je suis en train de réfléchir sur l’utilisation de cette approche façon « intelligence artificielle » à la gestion du risque en général. Si je produis des petites erreurs locales de façon délibérée et contrôlée, je peux apprendre plus vite et donc m’adapter plus vite aux conditions changeantes de mon environnement, ce qui me permet d’éviter de façon plus adroite des grosses erreurs incontrôlées.

Un ami m’a demandé récemment si je suis partant pour co-écrire un livre sur la gestion des soins médicaux. Mon chapitre à moi serait dévoué à la gestion du risque opérationnel dans le secteur de la santé. Le risque opérationnel en général est le type de risque liée à l’occurrence d’erreurs humaines, actes de malveillance ou bien des défaillances systémiques. Je suis tenté de développer une approche façon perceptron de ce sujet particulier. « Je suis tenté » veut dire que j’hésite. Le risque opérationnel dans les soins médicaux c’est dans une large mesure du risque clinique, donc des situations où la vie et le bien-être des patients sont en jeu. Expérimentation délibérée et contrôlée à ce niveau-là ? Hmouais… Peut-être. C’est du terrain glissant, ça. Intéressant, aussi. Il faut que je rumine ça un peu plus longtemps.

L’apprentissage à travers l’erreur délibérée est l’une des fonctions neuronales essentielles, possibles à simuler avec les réseaux neuronaux artificiels. Il y en a une autre, celle de signification, qui, à son tour, repose sur la généralisation et la distinction. Je vois un truc brun, rugueux, qui comme saillit du sol et ça a comme une coiffure branchée et feuillie sur l’extrémité supérieure. J’en vois d’autres, un peu similaires. Ah, oui, c’est ce qu’on appelle « un arbre ». Lorsqu’il y en a beaucoup dans un endroit, il peut s’avérer utile de les grouper sous la catégorie de « bois » ou « forêt » et en même temps ça peut profiter de les distinguer en saules, peupliers, pins etc. Si vous venez de conclure que le langage est une manifestation de généralisation et distinction, vous avez deviné juste. Chaque mot que nous utilisons en est un exemple.

Voilà qu’un créneau de recherche émerge, à ce sujet précis, un créneau qui renverse beaucoup de théories acquises et qui rend une certaine catégorie de réseaux neuronaux, ceux appelés « apprentissage profond » (« deep learning » en anglais) particulièrement intéressants. Les théories acquises sont celles qui considèrent la signification sémantique comme une fonction strictement supérieure de notre système nerveux. C’est tout dans le lobe frontal, l’aristocrate sophistiqué de notre cervelle, c’est tout culturel, comme imprimé sur la peau de la bête naturelle qui s’est accroupie par-dessous.

Bien sûr, une bonne question s’impose : qu’est-ce que je présente comme de la science la plus récente ? Rien que dans le service Science Direct, sous le mot clé « Economics », l’année 2017 avait apportée 27 551 articles nouveaux, soit plus de 75 articles par jour. En 2018, ça a même accéléré et jusqu’à présent (15 Octobre 2018) 28 820 articles sont parus, donc presque 107 par jour. J’approche le même dépositoire sous un angle différent, avec le mot clé behavioriste à la mode : « social brain ». Ça donne 16 077 articles durant les 9 mois de l’année 2018, plus de 89 par jour. Voilà donc un seul dépositoire scientifique – Science Direct, donc essentiellement que des journaux de la maison d’édition Elsevier – et juste deux mots clés. Bien généraux, ces deux-là, mais juste deux quand même.

Pas question que je lise tout ça en temps réel, il faut que je trie. Je me concentre sur mes petites obsessions : le behaviorisme économique, l’intelligence collective, les systèmes monétaires et l’innovation. J’essaie de cerner les découvertes les plus intéressantes et mon choix subjectif tombe sur deux articles à propos des hiérarchies sociales et de la façon dont nous les percevons : « Know Your Place: Neural Processing of Social Hierarchy in Humans » par Caroline F. Zink et al. et « The Emergence and Representation of Knowledge about Social and Nonsocial Hierarchies » par Dharshan Kumaran et al. .

Je me suis intéressé à ces articles précis puisqu’ils mettent en question, bien qu’indirectement, les assomptions fondamentales de l’économie classique, ainsi qu’une bonne part de la théorie des jeux et il ne faut pas oublier la sociologie. Alors ces assomptions fondamentales disent que les êtres humains forment, tout d’abord, des réseaux de coopération et d’échange, et ce n’est qu’ensuite – et l’ensuite, il est tout à fait substantiel – que des hiérarchies sociales prennent forme. Le père fondateur de ma discipline, Adam Smith , présente une vision de changement social où un marché relativement grand, doté en plus des voies navigables abondamment accessibles, permet la spécialisation (division de travail) et il en résulte développement d’échange économique. Une fois l’échange établi, les villes peuvent se former, qui deviennent un moteur de même plus d’échange et tout ça, ça crée une assiette fiscale qui à son tour permet un souverain d’être un souverain, de se trouver des chevaliers de table – ronde, de préférence – et après, ça va droit vers l’état moderne.

En d’autres mots, l’approche classique des sciences sociales assume que les hiérarchies sociales sont une superstructure bâtie sur la base des réseaux préexistants de coopération et d’échange. Les hiérarchies, dans cette approche, sont donc des créations culturelles, basées sur tout un tas d’idées établies et l’établissement desdites idées se fait largement par le travail de main d’œuvre qualifiée à utiliser des armes.

Ces deux articles que je viens de citer convergent tous vers un point de vue opposé : la perception de la hiérarchie, dans les êtres humains, est quelque chose de primaire et naturel. Bien sûr, les hiérarchies sociales complexes sont de fabrication culturelle, mais leur construction a une base neurologique apparemment plus primaire que les relations d’échange et de coopération.

Je me permettrai de développer un peu sur cette recherche neurologique. Je commence par l’article « Know Your Place: Neural Processing of Social Hierarchy in Humans » par Caroline F. Zink et al. Dans une expérience de laboratoire, les participants jouaient un jeu interactif, où ils devaient exécuter des tâches spécifiques pour une récompense monétaire et ils voyaient leur résultat comparé avec celui d’un autre joueur. Les commentaires des animateurs de l’expérience ainsi que la façon de rapporter les résultats du jeu créaient un environnement fortement compétitif et renforçaient l’impression que lesdits résultats créaient une hiérarchie. Plus élevé est ton score, plus haut tu te trouves dans la hiérarchie : ce genre-là. Cet « autre joueur » était fictif mais au moment même du jeu les participants ne le savaient pas : ils étaient persuadés qu’ils rivalisent avec une personne réelle. La perception qu’ils avaient de leur position hiérarchique basée sur la performance au jeu était donc délibérément programmée par les animateurs.

Deux scénarios du jeu étaient mis en place. Dans le premier, la hiérarchie crée dans les tours successifs du jeu était stable : le feedback que chaque participant recevait à propos de sa performance était cohérent entre les tours successifs. Dans le deuxième, ça changeait. Après l’expérience, les participants répondaient à un questionnaire où ils devaient exprimer, entre autres, leur opinion sur les joueurs qu’ils percevaient respectivement comme supérieurs, égaux ou bien inférieurs à eux-mêmes. L’activité de leur cerveau était observée par le moyen de la résonnance magnétique fonctionnelle.

En général, l’activation neurale du cerveau était la plus importante dans la perception d’un joueur supérieur dans une hiérarchie instable, suivie par une excitation légèrement moindre lorsque les participants se référaient à un joueur perçu comme supérieur dans une hiérarchie stable, et ensuit dans la situation de référence à un joueur inférieur dans la hiérarchie stable. Se référer à un joueur perçu comme inférieur dans une hiérarchie stable ne provoquait apparemment pas d’excitation cérébrale particulière. Le résultat le plus surprenant est cependant la géographie exacte de cette excitation. Bien sûr, le cortex frontal et le préfrontal : c’est là que toute notre culture réside. Le cortex occipital, ça s’excitait aussi, mais là non plus il n’y a pas de surprise : c’est la perception visuelle. Seulement, profondément en-dessous du Monsieur Cortex, il y a un humble laboureur neural appelé « ventrum striatum », responsable, entre autres de la perception olfactive, de la cicatrisation des plaies, des fonctions motrices etc. Chaque fois qu’il faut du jus neural, donc du neurotransmetteur, Monsieur Cortex passe la commande à ventrum striatum. C’est comme une usine à hormones.

Pourquoi c’est tellement important ? Eh bien, imaginez que dans un meeting d’affaires, tous vos muscles se mettent en alerte chaque fois que vous percevez quelqu’un comme gagnant de supériorité hiérarchique sur vous. Ça n’arrive pas ? Eh ben si, justement, ça arrive au niveau neural sans que nous nous en rendions compte. Avant que nous ayons le temps de cogiter consciemment toutes les subtilités culturelles des relations hiérarchiques, une perception très primaire du type « ce mec-là, il est supérieur à moi » survient. Dans cet article par Caroline F. Zink et al. il y a une série des graphes intéressants (page 275). Ils montrent la magnitude d’excitation neurale dans chaque partie du cerveau engagée dans la réaction générale. L’excitation la plus forte survient dans le cortex occipital (perception visuelle) et dans le ventru, striatum (usine à hormones, perception olfactive). L’excitation du cortex frontal et préfrontal est un peu moins prononcée. C’est aussi dans le cortex occipital et dans le ventrum striatum que la différence à observer dans la magnitude d’excitation, entre la perception de supériorité hiérarchique et celle d’infériorité était la plus visible.

Quelle connexion entre tout ce bazar neurophysiologique et les réseaux artificiels d’apprentissage profond ? Ces réseaux-là prennent le mécanisme général du perceptron, que j’avais déjà survolé un peu plus tôt, et y ajoutent la fonction de généralisation et distinction. La formalisation la plus simple de cette fonction est celle de distance Euclidienne. Chaque point de données est représenté avec deux coordonnées, et chaque paire des points se caractérise par une distance calculée façon Pythagore : A -> B = [(xB – xA)2 + (yB – yA)2]0,5. Les points de données sont groupés sur la base de leur distance Euclidienne respective, en des grappes distinctes, et ces grappes sont la base empirique de généralisation et distinction.

La distance Euclidienne peut être remplacée par la fonction Gaussienne mais la vraie sophistication est à trouver dans l’application du noyau mathématique.  En général, chaque collection des données numériques peut être soit représentée directement comme une matrice soit transformée en telle et cette matrice peut être, à son tour, représentée avec un nombre unique, un noyau. Les déterminants des matrices, que certains de parmi nous ont étudié à l’école, sont un exemple des noyaux algébriques.

Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ?

L’étiquette « stratégie »

Mon éditorial

Je suis en train de préparer quelques études des cas de management stratégique, pour des applications pédagogiques. J’essaie de faire une connexion avec ma recherche et d’utiliser les idées fraîchement empruntées de Peter Turchin, Thomas E. Currie, Edward A. L. Turner, et Sergey Gavrilets (Turchin et al. 2013[1]). La première étude de cas est celle d’une société américaine Life Point Health Inc. spécialisée dans les soins médicaux. Je m’y intéresse dans le contexte de cette notion générale d’intelligence collective, dont je suis obsédé – avec modération toutefois – à la suite de ma recherche sur le changement technologique et les systèmes monétaires. Comme cas d’étude sur la stratégie, Life Point Health présente deux traits intéressants. Toute grande organisation a besoin d’une stratégie pour se développer, seulement dans le cas des soins médicaux nous avons un autre besoin en jeu : une société (celle, qui fait l’environnement social de Life Point Health) a besoin de soins médicaux organisés, et donc elle a besoin d’un fournisseur de tels soins, qui, à son tour, aie une stratégie rationnelle de développement. La question générale que je pose dans ce cas est la suivante : est-ce qu’une stratégie est la manifestation d’une intelligence collective locale et endogène (celle de l’organisation) ou bien d’une intelligence collective généralisée et exogène par rapport à l’organisation (celle de tout son environnement social) ?

A ce point-là, une autre dimension de ce cas spécifique devient intéressante : celle de la formation de réseau. Life Point Health est une organisation à réseau, avec 72 campus médicaux localisés dans 22 états des Etats-Unis et avec une spécialisation claire dans les zones non-urbaines. Un business à réseau, ça peut se former de deux façons distinctes : une entité parmi plusieurs peut devenir le noyau dominant ou bien plusieurs entités peuvent décider de coopérer à pied d’égalité (ou presque). Les deux cas peuvent être étudiés du point de vue d’intelligence collective, sur la base conceptuelle offerte par cet article de Turchin et al. que je viens de citer au début du paragraphe précèdent. Turchin et al. étudient la formation des systèmes politiques et non pas des réseaux de business, mais c’est justement l’analogie entre les deux qui m’intéresse. Turchin et al. assument que la distinction entre une petite structure sociale et une grande réside dans la relation entre les distributions respectives des coûts et des bénéfices liés à la socialisation. Une petite structure sociale est celle où chaque membre de la société a une expérience directe des deux : je sacrifie un peu de mon autonomie personnelle et je vois clairement, dans ma vie de tous les jours, les bénéfices qui découlent d’un tel sacrifice. Le bénéfice le plus évident est le fait d’avoir une vie de tous les jours. La formation de telles structures, basées sur l’expérience des gains individuels, est la socialisation de base.

En revanche, une grande structure sociale est celle où la distribution des coûts de socialisation diffère de celle des bénéfices. Les coûts demeurent locaux, comme dans une petite structure, mais les bénéfices deviennent plus concentrés et prennent la forme de ce que Turchin et al. dénomment « institutions ultrasociales » – système politique, armée, système légal etc.- qui à leur tour ont une importance vitale dans la compétition entre sociétés. Au niveau individuel, les bénéfices d’ultrasocialisation sont présents mais le plus souvent indirect. L’un des plus manifestes, selon Turchin et al., est le fait de ne pas être exterminés, comme communauté locale, par une grande structure sociale du pays d’à côté qui s’est ultrasocialisée plus vite et plus profondément. Par analogie entre les structures politiques et celles d’affaires, j’assume que lorsqu’un réseau des business locaux se forme – comme le réseau d’hôpitaux de province dans la structure de Life Point Health – il peut y avoir une logique de socialisation de base (on coopère pour avoir des bénéfices directs de coopération) ou bien une logique d’ultrasocialisation (on se laisse aspirer dans un réseau pour ne pas être éliminés du marché par d’autres réseaux). Dans mon étude de cas de Life Point Health, je pose la question suivante : si j’ai en face de moi un ensemble amorphe d’hôpitaux de province, quelle est la probabilité qu’ils forment un réseau de coopération à pied d’égalité, selon le paradigme de socialisation simple ? Quelle est la probabilité qu’ils forment un réseau autour d’un noyau dominant, selon le modèle d’ultrasocialisation ?

Je superpose mes deux questions stratégiques et je vois quelque chose comme une matrice binomiale de Pascal : la stratégie d’une organisation peut être endogène ou bien exogène, et -quoi qu’il en soit – lorsque cette stratégie implique la formation d’un réseau d’organisations, ledit réseau peut se trouver alimenté par la socialisation simple sur la base des gains directs de coopération, ou bien par l’ultrasocialisation hiérarchique autour d’un noyau de pouvoir, forcée par une compétition féroce entre réseaux. Bon, à ce point-là mon moine interne – vous savez, ce gars austère qui se balade avec un gros rasoir d’Ockham dans sa poche – demande un peu de simplification. La formation d’un réseau à travers l’ultrasocialisation forcée par la compétition etc. : là, il y a définitivement trop de « tion » et ça à l’air un tout petit peu détaché de la réalité. Faut décomposer le problème en des morceaux possibles à avaler. Mon rasoir d’Ockham prend alors la forme des questions de base qu’on se pose dans toute recherche scientifique. Premièrement, pourquoi s’emmerder du tout avec ces stratégies ? A quoi bon ? Grandes organisations ont un impact sur notre vie de tous les jours, à commencer par l’influence sur la durée de ladite vie – mon cas de départ, Life Point Health Inc, est active dans le domaine des soins médicaux et donc c’est le cas de le dire – en passant ensuite à travers des différents aspects de ce que nous appelons « la qualité de vie » – salaires, prix, architecture, infrastructure – et en terminant par des trucs comme financement des campagnes électorales de nos hommes et femmes politiques. En plus, les stratégies que les dirigeants des grandes entreprises annoncent comme leurs ont une tendance intéressante à différer substantiellement de ce que les mêmes grandes entreprises font tous les jours. Un PDG d’un distributeur d’énergie annonce qu’à partir du Noël ils vont « créer plus de valeur » et moi, je découvre que cela se manifeste par un prix plus élevé sur ma facture d’électricité.

Bon, alors je sais que l’intérêt d’étudier des stratégies vient du fait qu’il y a un tas d’incohérence entre le discours et l’action là-dedans et ce tas a un impact profond sur ma vie. La seconde question de fond est l’objectif de la recherche. Mon intuition me dit que la direction la plus prometteuse de toute recherche est celle centrée sur le « comment ? » des choses. Comment est-ce que nous venons à coller l’étiquette « stratégie » sur ce que les organisations font, ainsi sur ce que leurs dirigeants déclarent qu’ils font ? Comment se forment-elles, ces séquences d’actions que nous nommons « stratégies » ?

Je suis d’humeur exploratrice et j’essaie donc de former une hypothèse forte. Une hypothèse forte requiert des assomptions faibles, c’est-à-dire des assomptions qui ne disent pas grand-chose. Je fais deux assomptions, plutôt faiblardes de mon point de vue. Une, il y a différence de fond entre discours et action, donc entre le discours sur la stratégie de l’organisation d’une part et les actions de cette même organisation d’autre part. Deux, il y a cohérence de second degré entre discours et action, c’est-à-dire un changement perceptible du discours stratégique témoigne d’un changement au niveau de l’action. En des mots plus simples, mes deux assomptions veulent dire que les gens font une chose et disent qu’ils font quelque chose de différent, et en même temps, lorsque les mêmes gens changent la façon dont ils décrivent leurs actions, ils ont le plus vraisemblablement modifié leur comportement.

Je visite donc le site http://www.lifepointhealth.net/investor-relations , j’y fouine jusqu’à je trouve leur dernier rapport annuel, pour l’année 2016, en forme officielle 10-K et je cherche là-dedans pour trouver du discours stratégique bien filtré. A la page 3, je trouve un chapitre intitulé « Business Strategy ». Ça peut correspondre et ça dit, entre autres :  « Nous croyons que des opportunités de croissance demeurent dans nos marchés existants. La croissance dans nos établissements existants dépend, en partie, du succès de nos hôpitaux dans le recrutement des médecins pour leurs personnels médicaux respectifs, de l’activité de ces médecins comme membres d’équipe, de leur expérience relativement longue dans nos hôpitaux, et enfin de de leur rôle dans l’admission des patients internes ainsi que dans l’administrations des soins aux patients externes ». Le discours stratégique, il y en a plus dans ce chapitre, mais concentrons-nous sur ce passage précis. Ça dit que le mécanisme du business, chez Life Point Health, s’appuie tout d’abord sur le premier contact du patient avec l’hôpital. Je perçois deux options fondamentales : soit le patient rencontre un médecin membre du personnel et les évènements prennent la tournure A, soit il a son premier contact avec quelqu’un d’autre (membre du personnel administratif, agent d’assurance médicale, médecin en contrat temporaire etc.) et alors les évènements se déroulent selon le scénario B. Le tour de phrase dans le discours stratégique cité suggère que le scénario A est définitivement plus productif pour l’organisation que le scénario B et c’est l’incidence des contacts type A avec les patients qui pompe le résultat d’exploitation dans les marchés existants. Lorsque vous allez dans quel hôpital que ce soit, quelles sont les chances que votre médecin traitant soit la même personne que celle qui vous aie accueilli après que vous ayez franchi la porte de l’hôpital ? Je vais vous dire : ces chances sont maigres. Cela ne se pratique pratiquement pas, au moins pas en Europe. Soit le modèle stratégique décrit dans ce court fragment est totalement con et détaché de la réalité, peut-être même dangereux pour les patients, soit il est unique dans son efficacité.

[1] Turchin P., Currie, T.E.,  Turner, E. A. L., Gavrilets, S., 2013, War, space, and the evolution of Old World complex societies, Proceedings of The National Academy of Science, vol. 110, no. 41, pp. 16384 – 16389