L’automate cellulaire respectable

J’essaie de développer une jonction entre deux créneaux de ma recherche : l’étude de faisabilité pour mon « Projet Aqueduc » d’une part et ma recherche plus théorique sur le phénomène d’intelligence collective d’autre part. Question : comment prédire et prévoir l’absorption d’une technologie nouvelle dans une structure sociale ? En des termes plus concrets, comment puis-je prévoir l’absorption de « Projet Aqueduc » dans l’environnement socio-économique ? Pour me rendre la vie plus difficile – ce qui est toujours intéressant – je vais essayer de construire le modèle de cette absorption à partir d’une base théorique relativement nouvelle pour moi, notamment la théorie d’automates cellulaires. En termes de littérature, pour le moment, je me réfère à deux articles espacés de 20 ans l’un de l’autre : Bandini, Mauri & Serra (2001[1]) ainsi que Yu et al. (2021[2]).

Pourquoi cette théorie précise ? Pourquoi pas, en fait ? Sérieusement, la théorie d’automates cellulaires essaie d’expliquer des phénomènes très complexes – qui surviennent dans des structures qui ont l’air d’être vraiment intelligentes – à partir d’assomptions très faibles à propos du comportement individuel d’entités simples à l’intérieur de ces structures. En plus, cette théorie est déjà bien traduite en termes d’intelligence artificielle et se marie donc bien avec mon but général de développer une méthode de simuler des changements socio-économiques avec des réseaux neuronaux.

Il y a donc un groupe des gens qui s’organisent d’une façon ou d’une autre autour d’une technologie nouvelle. Les ressources économiques et la structure institutionnelle de ce groupe peuvent varier : ça peut être une société de droit, un projet public-privé, une organisation non-gouvernementale etc. Peu importe : ça commence comme une microstructure sociale. Remarquez : une technologie existe seulement lorsque et dans la mesure qu’une telle structure existe, sinon une structure plus grande et plus complexe. Une technologie existe seulement lorsqu’il y a des gens qui s’occupent d’elle.

Il y a donc ce groupe organisé autour d’une technologie naissante. Tout ce que nous savons sur l’histoire économique et l’histoire des technologies nous dit que si l’idée s’avère porteuse, d’autres groupes plus ou moins similaires vont se former. Je répète : d’autres groupes. Lorsque la technologie des voitures électriques avait finalement bien mordu dans le marché, ceci n’a pas entraîné l’expansion monopolistique de Tesla. Au contraire : d’autres entités ont commencé à bâtir de façon indépendante sur l’expérience de Tesla. Aujourd’hui, chacun des grands constructeurs automobiles vit une aventure plus ou moins poussée avec les bagnoles électriques et il y a toute une vague des startups crées dans le même créneau. En fait, la technologie du véhicule électrique a donné une deuxième jeunesse au modèle de petite entreprise automobile, un truc qui semblait avoir été renvoyé à la poubelle de l’histoire.

L’absorption d’une technologie nouvelle peut donc être représentée comme la prolifération des cellules bâties autour de cette technologie. A quoi bon, pouvez-vous demander. Pourquoi inventer un modèle théorique de plus pour le développement des technologies nouvelles ? Après tout, il y en a déjà pas mal, de tels modèles. Le défi théorique consiste à simuler le changement technologique de façon à cerner des Cygnes Noirs possibles. La différence entre un cygne noir tout simple et un Cygne Noir écrit avec des majuscules est que ce dernier se réfère au livre de Nassim Nicolas Taleb « The Black Swan. The impact of the highly improbable », Penguin, 2010. Oui, je sais, il y a plus que ça. Un Cygne Noir en majuscules peut bien être le Cygne Noir de Tchaïkovski, donc une femme (Odile) autant attirante que dangereuse par son habileté d’introduire du chaos dans la vie d’un homme. Je sais aussi que si j’arrangerai une conversation entre Tchaïkovski et Carl Gustav Jung, les deux messieurs seraient probablement d’accord qu’Odile alias Cygne Noir symbolise le chaos, en opposition à l’ordre fragile dans la vie de Siegfried, donc à Odette. Enfin, j’fais pas du ballet, moi, ici. Je blogue. Ceci implique une tenue différente, ainsi qu’un genre différent de flexibilité. Je suis plus âgé que Siegfried, aussi, comme par une génération.  

De tout en tout, mon Cygne Noir à moi est celui emprunté à Nassim Nicolas Taleb et c’est donc un phénomène qui, tout en étant hors d’ordinaire et surprenant pour les gens concernés, est néanmoins fonctionnellement et logiquement dérivé d’une séquence des phénomènes passés. Un Cygne Noir se forme autour des phénomènes qui pendant un certain temps surviennent aux extrémités de la courbe Gaussienne, donc à la frange de probabilité. Les Cygnes Noirs véhiculent du danger et des opportunités nouvelles, à des doses aussi variées que le sont les Cygnes Noirs eux-mêmes. L’intérêt pratique de cerner des Cygnes Noirs qui peuvent surgir à partir de la situation présente est donc celui de prévenir des risques du type catastrophique d’une part et de capter très tôt des opportunités exceptionnelles d’autre part.

Voilà donc que, mine de rien, je viens d’enrichir la description fonctionnelle de ma méthode de simuler l’intelligence collective des sociétés humaines avec les réseaux neuronaux artificiels. Cette méthode peut servir à identifier à l’avance des développements possibles du type de Cygne Noir : significatifs, subjectivement inattendus et néanmoins fonctionnellement enracinées dans la réalité présente.

Il y a donc cette technologie nouvelle et il y a des cellules socio-économiques qui se forment autour d’elle. Il y a des espèces distinctes des cellules et chaque espèce correspond à une technologie différente. Chaque cellule peut être représentée comme un automate cellulaire A = (Zd, S, n, Sn+1 -> S), dont l’explication commence avec Zd, donc l’espace à d dimensions ou les cellules font ce qu’elles ont à faire. L’automate cellulaire ne sait rien sur cet espace, tout comme une truite n’est pas vraiment forte lorsqu’il s’agit de décrire une rivière. Un automate cellulaire prend S états différents et ces états sont composés des mouvements du type un-pas-à-la-fois, dans n emplacements cellulaires adjacents. L’automate sélectionne ces S états différents dans un catalogue plus large Sn+1 de tous les états possibles et la fonction Sn+1 -> S alias la règle locale de l’automate A décrit de façon générale le quotient de cette sélection, donc la capacité de l’automate cellulaire d’explorer toutes les possibilités de bouger son cul (cellulaire) juste d’un cran à partir de la position actuelle.

Pourquoi distinguer ces quatre variables structurelles dans l’automate cellulaire ? Pourquoi n’assumons-nous pas que le nombre possible des mouvements « n » est une fonction constante des dimensions offertes par l’espace Zd ? Pourquoi ne pas assumer que le nombre réel d’états S est égal au total possible de Sn+1 ? Eh bien parce que la théorie d’automates cellulaires a des ambitions de servir à quelque chose d’utile et elle s’efforce de simuler la réalité. Il y a donc une technologie nouvelle encapsulée dans une cellule sociale A. L’espace social autour d’A est vaste, mais il peut y avoir des portes verrouillées. Des marchés oligopoles, des compétiteurs plus rapides et plus entreprenants, des obstacles légaux et mêmes des obstacles purement sociaux. Si une société à qui vous proposez de coopérer dans votre projet innovant craint d’être exposée à 10 000 tweets enragés de la part des gens qui n’aiment pas votre technologie, cette porte-là est fermée, quoi que la dimension où elle se trouve est théoriquement accessible.

Si je suis un automate cellulaire tout à fait ordinaire et j’ai la possibilité de bouger dans n emplacements sociaux adjacents à celui où je suis maintenant, je commence par choisir juste un mouvement et voir ce qui se passe. Lorsque tout se passe de façon satisfaisante, j’observe mon environnement immédiat nouveau – j’observe donc le « n » nouveau visible à partir de la cellule où je viens de bouger – je fais un autre mouvement dans un emplacement sélectionné dans ce nouveau « n » et ainsi de suite. Dans un environnement immédiat « n » moi, l’automate cellulaire moyen, j’explore plus qu’un emplacement possible de parmi n seulement lorsque je viens d’essuyer un échec dans l’emplacement précédemment choisi et j’avais décidé que la meilleure stratégie est de retourner à la case départ tout en reconsidérant les options possibles.         

La cellule sociale bâtie autour d’une technologie va donc se frayer un chemin à travers l’espace social Zd, en essayant de faire des mouvement réussis, donc en sélectionnant une option de parmi les « n » possibles. Oui, les échecs ça arrive et donc parfois la cellule sociale va expérimenter avec k > 1 mouvements immédiats. Néanmoins, la situation où k = n c’est quand les gens qui travaillent sur une technologie nouvelle ont essayé, en vain, toutes les options possibles sauf une dernière et se jettent la tête en avant dans celle-ci, qui s’avère une réussite. De telles situations arrivent, je le sais. Je crois bien que Canal+ était une aventure de ce type à ces débuts. Néanmoins, lorsqu’un truc marche, dans le lancement d’une technologie nouvelle, on juste continue dans la foulée sans regarder par-dessus l’épaule.

Le nombre réel S d’états que prend un automate cellulaire est donc largement sujet à l’hystérèse. Chaque mouvement réussi est un environnement immédiat de moins à exploiter, donc celui laissé derrière nous.  En même temps, c’est un défi nouveau de faire l’autre mouvement réussi au premier essai sans s’attarder dans des emplacements alternatifs. L’automate cellulaire est donc un voyageur plus qu’un explorateur. Bref, la formulation A = (Zd, S, n, Sn+1 -> S) d’un automate cellulaire exprime donc des opportunités et des contraintes à la fois.

Ma cellule sociale bâtie autour de « Projet Aqueduc » coexiste avec des cellules sociales bâties autour d’autres technologies. Comme tout automate cellulaire respectable, je regarde autour de moi et je vois des mouvements évidents en termes d’investissement. Je peux bouger ma cellule sociale en termes de capital accumulé ainsi que de l’échelle physique des installations. Je suppose que les autres cellules sociales centrées sur d’autres technologies vont faire de même : chercher du capital et des opportunités de croître physiquement. Excellent ! Voilà donc que je vois deux dimensions de Zd : l’échelle financière et l’échelle physique. Je me demande comment faire pour y bouger et je découvre d’autres dimensions, plus comportementales et cognitives celles-là : le retour interne (profit) espéré sur l’investissement ainsi que le retour externe (croissance de valeur d’entreprise), la croissance générale du marché de capital d’investissement etc.

Trouver des dimensions nouvelles, c’est fastoche, par ailleurs. Beaucoup plus facile que c’est montré dans les films de science-fiction. Il suffit de se demander ce qui peut bien gêner nos mouvements, regarder bien autour, avoir quelques conversations et voilà ! Je peux découvrir des dimensions nouvelles même sans accès à un téléporteur inter-dimensionnel à haute énergie. Je me souviens d’avoir vu sur You Tube une série de vidéos dont les créateurs prétendaient savoir à coup sûr que le grand collisionneur de hadrons (oui, celui à Genève) a ouvert un tunnel vers l’enfer. Je passe sur des questions simplissimes du genre : « Comment savez-vous que c’est un tunnel, donc un tube avec une entrée et une sortie ? Comment savez-vous qu’il mène en enfer ? Quelqu’un est-il allé de l’autre côté et demandé les locaux où ça où ils habitent ? ». Le truc vraiment épatant est qu’il y a toujours des gens qui croient dur comme fer que vous avez besoin des centaines de milliers de dollars d’investissement et des années de recherche scientifique pour découvrir un chemin vers l’enfer. Ce chemin, chacun de nous l’a à portée de la main. Suffit d’arrêter de découvrir des dimensions nouvelles dans notre existence.

Bon, je suis donc un automate cellulaire respectable qui développe le « Projet Aqueduc » à partir d’une cellule d’enthousiastes et en présence d’autres automates cellulaires. On bouge, nous, les automates cellulaires, le long de deux dimensions bien claires d’échelle – capital accumulé et taille physique des installations – et on sait que bouger dans ces dimensions-ci exige un effort dans d’autres dimensions moins évidentes qui s’entrelacent autour d’intérêt général pour notre idée de la part des gens extra – cellulaires. Notre Zd est en fait un Zd eh ben alors !. Le fait d’avoir deux dimensions bien visibles et un nombre discutable de dimensions plus floues fait que le nombre « n » des mouvements possibles est tout aussi discutable et on évite d’en explorer toutes les nuances. On saute sur le premier emplacement possible de parmi « n », ce qui nous transporte dans un autre « n », puis encore et encore.

Lorsque tous les automates cellulaires démontrent des règles locales Sn+1 -> S à peu près cohérentes, il est possible d’en faire une description instantanée Zd -> S, connue aussi comme configuration de A ou bien son état global. Le nombre d’états possibles que mon « Projet Aqueduc » peut prendre dans un espace rempli d’automates cellulaires va dépendre du nombre d’états possibles d’autres automates cellulaires. Ces descriptions instantanées Zd -> S sont, comme le nom l’indique, instantanées, donc temporaires et locales. Elles peuvent changer. En particulier, le nombre S d’états possibles de mon « Projet Aqueduc » change en fonction de l’environnement immédiat « n » accessible à partir de la position courante t. Une séquence de positions correspond donc à une séquence des configurations ct = Zd -> S (t) et cette séquence est désignée comme comportement de l’automate cellulaire A ou bien son évolution.        


[1] Bandini, S., Mauri, G., & Serra, R. (2001). Cellular automata: From a theoretical parallel computational model to its application to complex systems. Parallel Computing, 27(5), 539-553. https://doi.org/10.1016/S0167-8191(00)00076-4

[2] Yu, J., Hagen-Zanker, A., Santitissadeekorn, N., & Hughes, S. (2021). Calibration of cellular automata urban growth models from urban genesis onwards-a novel application of Markov chain Monte Carlo approximate Bayesian computation. Computers, environment and urban systems, 90, 101689. https://doi.org/10.1016/j.compenvurbsys.2021.101689