Locally smart. Case study in finance.


My editorial on You Tube


Here I go, at the frontier between research and education. This is how I earn my living, basically, combining research and education. I am presenting and idea I am currently working on, in a team, regarding a financial scheme for local governments. I am going to develop it here as a piece of educational material for my course « Fundamentals of Finance ». I am combining educational explanation with specific techniques of scientific research.


Here is the deal: creating a financial scheme, combining pooled funds, crowdfunding, securities, and cryptocurriences, for facilitating smart urban development through the creation of local start-up businesses. A lot of ideas in one concept, but this is science, for one, and thus anything is possible, and this is education, for two, hence we need to go through as many basic concepts as possible. It goes more or less as follows: a local government creates two financial instruments, a local investment fund, and a local crowdfunding platform. Both serve to facilitate the creation and growth of local start-ups, which, in turn, facilitate smart urban development.


We need a universe in order to do anything sensible. Good. Let’s make a universe, out of local governments, local start-up businesses, and local projects in smart urban development. Projects are groups of people with a purpose and a commitment to achieve it together. Yes, wars are projects, just as musical concerts and public fundraising campaigns for saving the grey wolf. Projects in smart urban development are groups of people with a purpose and a commitment to do something interesting about implementing new technologies into the urban infrastructures and this improving the quality, and the sustainability of urban life.


A project is like a demon. It needs a physical body, a vessel to carry out the mission at hand. Projects need a physical doorstep to put a clear sign over it. It is called ‘headquarters’, it has an official address, and we usually need it if we want to do something collective and social. This is where letters from the bank should be addressed to. I have the idea to embody local projects of smart urban development in physical bodies of local start-up businesses. This, in turn, implies turning those projects into profitable ventures. What is the point? A business has assets and it has equity. Assets can back equity, and liabilities. Both equity and liabilities can be represented with financial instruments, namely tradable securities. With that, we can do finance.


Why securities? The capital I need, and which I don’t have, is the capital somebody is supposed to entrust with me. Thus, by acquiring capital to finance my project, I give other people claims on the assets I am operating with. Those people will be much more willing to entrust me with their capital if those claims are tradable, i.e. when they can back off out of the business really quickly. That’s the idea of financial instruments: making those claims flow and float around, a bit like water.


Question: couldn’t we just make securities for projects, without embodying them in businesses? Problematic. Any financial instrument needs some assets to back it up, on the active side of the balance sheet. Projects, as long as they have no such back up in assets, are not really in a position to issue any securities. Another question: can we embody those projects in institutional forms other than businesses, e.g. foundations, trusts, cooperatives, associations? Yes, we can. Each institutional form has its pluses and its minuses. Business structures have one peculiar trait, however: they have at their disposal probably the broadest range of clearly defined financial instruments, as compared to other institutional forms.


Still, we can think out of the box. We can take some financial instruments peculiar to business, and try to transplant them onto another institutional body, like that of an association. Let’s just try and see what happens. I am a project in smart urban development. I go to a notary, and I write the following note: “Whoever hands this note on December 31st of any calendar year from now until 2030, will be entitled to receive 20% of net profits after tax from the business identified as LHKLSHFKSDHF”. Signature, date of signature, stamp by the notary. Looks like a security? Mmmwweeelll, maybe. Let’s try and put it in circulation. Who wants my note? What? What do I want in exchange? Let’s zeeee… The modest sum of $2 000 000? You good with that offer?


Some of you will say: you, project, you stop right there and you explain a few things. First of all, what if you really have those profits, and 20% of them really make it worth to hand you $2 000 000 now? How exactly can anyone claim those 20%? How will they know the exact sum they are entitled to? Right, say I (project), we need to write some kind of contract with those rules inside. It can be called corporate bylaw, and we need to write it all down. For example, what if somebody has this note on December 31st, 2025, and then they sell it to someone else on January 2nd, 2026, and the profits for 2025 will be really accounted for like in February 2026 at best, and then, who is entitled to have those 20% of profits: the person who had the note on December 31st, 2025, or the one presenting it in 2026, when all is said and done about profits? Sort of tricky, isn’t it? The note says: ‘Whoever hands this note on December 31st… etc.’, only the act of handing is now separated from the actual disclosure of profits. We keep that in mind: the whole point of making a claim into a security is to make it apt for circulation. If the circulation in itself becomes too troublesome, the security loses a lot of its appeal.


See? This note contains a conditional claim. Someone needs to hand the note at the right moment and in the right place, there need to be any profit to share etc. That’s the thing about conditional claims: you need to know exactly how to apprehend those conditions, which the claim is enforceable upon.


As I think about the exact contents of that contract, it looks like me and anyone holds that note are partners in business. We are supposed to share profits. Profits come from the exploitation of some assets, and they become real only after all the current liabilities have been paid. Hence, we actually share equity in those assets. The note is an equity-based security, a bit primitive, yes, certainly, still an equity-based security.


Another question from the audience: “Project, with all the due respect, I don’t really want to be partners in business with you. Do you have an alternative solution to propose?”. Maybe I have… What do you say about a slightly different note, like “Whoever hands this note on December 31st of any calendar year from now until 2030, will be entitled to receive $500 000 from the bank POIUYTR not later than until January 15th of the next calendar year”. Looks good? You remember what is that type of note? This is a draft, or routed note, a debt-based security. It embodies an unconditional claim, routed on that bank with an interesting name, a bit hard to spell aloud. No conditions attached, thus less paperwork with a contract. Worth how much? Maybe $2 000 000, again?


No conditions, yet a suggestion. If, on the one hand, I grant you a claim on 20% of my net profit after tax, and, on the other hand, I am ready to give an unconditional claim on $500 000, you could search some mathematical connection between the 20% and the $500 000. Oh, yes, and there are those $2 000 000. You are connecting the dots. Same window in time, i.e. from 2019 through 2030, which makes 11 occasions to hand the note and claim the money. I multiply occasions by unconditional claims, and I go 11*$500 000 = $5 500 000. An unconditional claim on $5 000 000 spread over 11 annual periods is being sold for $2 000 000. Looks like a ton of good business to do, still let’s do the maths properly. You could invest your $2 000 000 in some comfy sovereign bonds, for example the federal German ones. Rock solid, those ones, and they can yield like 2% a year. I simulate: $2 000 000*(1+0,02)11 =  $2 486 748,62. You pay me $2 000 000, you forego the opportunity to earn $486 748,62, and, in exchange, you receive an unconditional claim on $5 500 000. Looks good, at least at the first sight. Gives you a positive discount rate of ($5 500 000 – $2 486 748,62)/ $2 486 748,62 = 121,2% on the whole 11 years of the deal, thus 121,2%/11 = 11% a year. Not bad.


When you have done the maths from the preceding paragraph, you can assume that I expect, in that project of smart urban development, a future stream of net profit after tax, over the 11 fiscal periods to come, somewhere around those $5 500 000. Somewhere around could be somewhere above or somewhere below.  Now, we enter the world of behavioural finance. I have laid my cards on the table, with those two notes. Now, you try to figure out my future behaviour, as well as the behaviour to expect in third parties. When you hold a claim, on whatever and whomever you want, this claim has two financial characteristics: enforceability and risk on the one hand, and liquidity on the other hand. You ask yourself, what exactly can the current holder of the note enforce in terms of payback from my part, and what kind of business you can do by selling those notes to someone else.


In a sense, we are playing a game. You face a choice between different moves. Move #1: buy the equity-based paper and hold. Move #2: buy the equity-based one and sell it to third parties. Move #3: buy the debt-based routed note and hold. Move #4: buy the routed note and sell it shortly after. You can go just for one of those moves, or make a basket thereof, if you have enough money to invest more than one lump injection of $2 000 000 into my project of smart urban development.


You make your move, and you might wonder what kind of move will I make, and what will other people do. Down that avenue of thinking, madness lies. Finance means, very largely, domesticated madness, and thus, when you are a financial player, instead of wondering what other people will do, you look for reliable benchmarks in the existing markets. This is an important principle of finance: quantities and prices are informative about the human behaviour to expect. When you face the choice between moves #1 ÷ #4, you will look, in the first place, for and upon the existing markets. If I grant you 20% of my profits in exchange of $2 000 000, which, in fact, seem corresponding to at least $500 000 of future annual cash flow. If 20% of something is $500 000, the whole something makes $500 000/ 20% = $2 500 000. How much equity does it correspond to? Here it comes to benchmarking. Aswath Damodaran, from NYU Stern Undergraduate College, publishes average ROE (return on equity) in different industries. Let’s suppose that my project of smart urban development is focused on Environmental & Waste Services. It is urban, it claims being smart, hence it could be about waste management. That makes 17,95% of average ROE, i.e. net profit/equity = 17,95%. Logically, equity = net profit/17,95%, thus I go $2 500 000/17,95% = $13 927 576,60 and this is the equity you can reasonably expect I expect to accumulate in that project of smart urban development.


Among the numerous datasets published by Aswath Damodaran, there is one containing the so-called ROIC, or return on invested capital, thus on the total equity and debt invested in the business. In the same industry, i.e. Environmental & Waste Services, it is 13,58%. It spells analogously to ROE, thus it is net profit divided by the total capital invested, and, logically, total capital invested = net profit / ROIC = $2 500 000 / 13,58% = $18 409 425,63. Equity alone makes $13 927 576,60, equity plus debt makes $18 409 425,63, therefore debt = $18 409 425,63 – $13 927 576,60 =  $4 481 849,02.


With those rates of return on, respectively, equity and capital invested, those 11% of annual discount, benchmarked against German sovereign bonds, look acceptable. If I take a look at the financial instruments listed in the AIM market of London Stock Exchange, and I dig a bit, I can find corporate bonds, i.e. debt-based securities issued by incorporated business structures. Here come, for example, the bonds issued by 3i Group, an investment fund. They are identified with ISIN (International Securities Identification Number) XS0104440986, they were issued in 1999, and their maturity date is December 3rd, 2032. They are endowed with an interest rate of 5,75% a year, payable in two semi-annual instalments every year. Once again, the 11% discount offered on those imaginary routed notes of my project look interesting in comparison.


Before I go further, I am once again going to play at anticipating your questions. What is the connection between the interest rate and the discount rate, in this case? I am explaining numerically. Imagine you buy corporate bonds, like those 3i Group bonds, with an interest rate 5,75% a year. You spend $2 000 000 on them. You hold them for 5 years, and then you sell them to third persons. Just for the sake of simplifying, I suppose you sell them for the same face value you bought them, i.e. for $2 000 000. What happened arithmetically, from your point of view, can be represented as follows: – $2 000 000 + 5*5,75%*$2 000 000 + $2 000 000 = $575 000. Now, imagine that instead of those bonds, you bought, for an amount of $2 000 000,  debt-based routed notes of my project, phrased as follows: “Whoever hands this note on December 31st of any calendar year from now until Year +5, will be entitled to receive $515 000 from the bank POIUYTR not later than until January 15th of the next calendar year”. With such a draft (remember: another name for a routed note), you will total – $2 000 000 + 5*$515 000 = $575 000.


Same result at the end of the day, just phrased differently. With those routed notes of mine, I earn a a discount of $575 000, and with the 3i bonds, you earn an interest of $575 000. You understand? Whatever you do with financial instruments, it sums up to a cash flow. You spend your capital on buying those instruments in the first place, and you write that initial expenditure with a ‘-’ sign in your cash flow. Then you receive some ‘+’ cash flows, under various forms, and variously described. At the end of the day, you sum up the initial outflow (minus) of cash with the subsequent inflows (pluses).


Now, I look back, I mean back to the beginning of this update on my blog, and I realize how far have I ventured myself from the initial strand of ideas. I was about to discuss a financial scheme, combining pooled funds, crowdfunding, securities, and cryptocurriences, for facilitating smart urban development through the creation of local start-up businesses. Good. I go back to it. My fundamental concept is that of public-private partnership, just peppered with a bit of finance. Local governments do services connected to waste and environmental care. The basic way they finance it is through budgetary spending, and sometimes they create or take interest in local companies specialized in doing it. My idea is to go one step further, and make local governments create and run investment funds specialized in taking interest in such businesses.


One of the basic ideas when running an investment fund is to make a portfolio of participations in various businesses, with various temporal horizons attached. We combine the long term with the short one. In some companies we invest for like 10 years, and in some others just for 2 years, and then we sell those shares, bonds, or whatever. When I was working on the business plan for the BeFund project, I had a look at the shape those investment portfolios take. You can sort of follow back that research of mine in « Sort of a classical move » from March 15th, 2018. I had quite a bit of an exploration into the concept of smart cities. See « My individual square of land, 9 meters on 9 », from January 11, 2018, or « Smart cities, or rummaging in the waste heap of culture » from January 31, 2018, as for this topic. What comes out of my research is that the combination of digital technologies with the objectively growing importance of urban structures in our civilisation brings new investment opportunities. Thus, I have this idea of local governments, like city councils, becoming active investors in local businesses, and that local investment would combine the big, steady ventures – like local waste management companies – with a lot of small startup companies.


This basic structure in the portfolio of a local investment fund reflects my intuitive take on the way a city works. There is the fundamental, big, heavy stuff that just needs to work – waste management, again, but also water supply, energy supply etc. – and there is the highly experimental part, where the city attempts to implement radically new solutions on the grounds of radically new technologies. The usual policy that I can observe in local governments, now, is to create big local companies for the former category, and to let private businesses take over entirely the second one. Now, imagine that when you pay taxes to the local government, part of your tax money goes into an investment fund, which takes participations in local startups, active in the domain on those experimental solutions and new technologies. Your tax money goes into a portfolio of investments.


Imagine even more. There is local crowdfunding platform, similar to Kickstarter or StartEngine, where you can put your money directly into those local ventures, without passing by the local investment fund as a middleman. On that crowdfunding platform, the same local investment fund can compete for funding with other ventures. A cryptocurrency, internal to that crowdfunding platform, could be used to make clearer financial rules in the investment game.


When I filed that idea for review, in the form of an article, with a Polish scientific journal, I received back an interestingly critical review. There were two main lines of criticism. Firstly, where is the advantage of my proposed solution over the presently applied institutional schemes? How could my solution improve smart urban development, as compared to what local governments currently do? Secondly, doesn’t it go too far from the mission of local governments? Doesn’t my scheme push public goods too far into private hands and doesn’t it make local governments too capitalistic?


I need to address those questions, both for revising my article, and for giving a nice closure to this particular, educational story in the fundamentals of finance. Functionality first, thus: what is the point? What can be possibly improved with that financial scheme I propose? Finance has two essential functions: it meets the need for liquidity, and, through the mechanism of financial markets. Liquidity is the capacity to enter in transactions. For any given situation there is a total set T of transactions that an entity, finding themselves in this situation, could be willing to enter into. Usually, we can’t enter it all, I mean we, entities. Individuals, businesses, governments: we are limited in our capacity to enter transactions. For the given total set T of transactions, there is just a subset Ti that i-th entity can participate in. The fraction « Ti/T » is a measure of liquidity this entity has.


Question: if, instead of doing something administratively, or granting a simple subsidy to a private agent, local governments act as investment funds in local projects, how does it change their liquidity, and the liquidity of local communities they are the governments of? I went to the website of the Polish Central Statistical Office, there I took slightly North-East and landed in their Local Data Bank. I asked around for data regarding the financial stance of big cities in Poland, and I found out some about: Wroclaw, Lodz, Krakow, Gdansk, Kielce, and Poznan. I focused on the investment outlays of local governments, the number of new business entities registered every year, per 10 000 residents, and on population. Here below, you can find three summary tables regarding these metrics. You will see by yourself, but in a bird’s eye view, we have more or less stationary populations, and local governments spending a shrinking part of their total budgets on fixed local assets. Local governments back off from financing those assets. In the same time, there is growing stir in business. There are more and more new business entities registered every year, in relation to population. Those local governments look as if they were out of ideas as for how to work with that local business. Can my idea change the situation? I develop on this one further below those two tables.



The share of investment outlays in the total expenditures of the city council, in major Polish cities
Year Wroclaw Lodz Krakow Gdansk Kielce Poznan Warsaw
2008 31,8% 21,0% 19,7% 22,6% 15,3% 27,9% 19,8%
2009 34,6% 23,5% 20,4% 20,6% 18,6% 28,4% 17,8%
2010 24,2% 15,2% 16,7% 24,5% 21,2% 29,6% 21,4%
2011 20,3% 12,5% 14,5% 33,9% 26,9% 30,1% 17,1%
2012 21,5% 15,3% 12,6% 38,2% 21,9% 20,8% 16,8%
2013 15,0% 19,3% 11,0% 28,4% 18,5% 18,1% 15,0%
2014 15,6% 24,4% 16,4% 27,0% 18,6% 11,8% 17,5%
2015 18,4% 26,8% 13,7% 21,3% 23,8% 24,1% 10,2%
2016 13,3% 14,3% 11,5% 15,2% 10,7% 17,5% 9,0%
2017 11,7% 10,2% 11,5% 12,2% 14,1% 12,3% 12,0%
Delta 2017 – 2008 -20,1% -10,8% -8,2% -10,4% -1,2% -15,6% -7,8%



Population of major cities
Year Wroclaw Lodz Krakow Gdansk Kielce Poznan Warsaw
2008 632 162 747 152 754 624 455 581 205 094 557 264 1 709 781
2009 632 146 742 387 755 000 456 591 204 835 554 221 1 714 446
2010 630 691 730 633 757 740 460 509 202 450 555 614 1 700 112
2011 631 235 725 055 759 137 460 517 201 815 553 564 1 708 491
2012 631 188 718 960 758 334 460 427 200 938 550 742 1 715 517
2013 632 067 711 332 758 992 461 531 199 870 548 028 1 724 404
2014 634 487 706 004 761 873 461 489 198 857 545 680 1 735 442
2015 635 759 700 982 761 069 462 249 198 046 542 348 1 744 351
2016 637 683 696 503 765 320 463 754 197 704 540 372 1 753 977
2017 638 586 690 422 767 348 464 254 196 804 538 633 1 764 615
Delta 2017 – 2008 6 424 (56 730) 12 724 8 673 (8 290) (18 631) 54 834


Number of newly registered business entities per 10 000 residents, in major Polish cities
Year Wroclaw Lodz Krakow Gdansk Kielce Poznan Warsaw
2008 190 160 200 190 140 210 200
2009 195 167 205 196 149 216 207
2010 219 193 241 213 182 238 274
2011 221 169 204 195 168 244 249
2012 228 187 230 201 168 255 274
2013 237 187 224 211 175 262 307
2014 236 189 216 217 157 267 303
2015 252 183 248 236 185 283 348
2016 265 186 251 238 176 270 364
2017 272 189 257 255 175 267 345
Delta 2017 – 2008 82,00 29,00 57,00 65,00 35,00 57,00 145,00


Let’s take two cases from the table: my hometown Krakow, and my capital Warsaw. In the former case, the negative gap in the investment outlays of the local government is – 44 mlns of zlotys – some €10 mln – and in the latter case it is minus 248,46 millions of zlotys, thus about €56,5 mln. If we want to really get after new technologies in cities, we need to top up those gaps, possibly with a surplus. How can my idea help to save the day?


When I try to spend €10 mln euro more on the urban fixed assets, I need to have all those €10 mln. I need to own them directly, in my balance sheet, before spending them. On the other hand, when I want to create an investment fund, which would take part in local startups, and by their intermediary would make those €10 mln worth of assets to happen in real life, I need much less. I start with the balance sheet directly attached to those assets: €10 mln in fixed assets = equity of the startup(s) + liabilities of the startup(s). Now, equity of the startup(s) = shares of our investment fund + shares of other partners. At the end of the day, the local government could finance assets of €10 mln with 1 or 2 millions of euro of own equity, maybe even less.


From there on, it went sort of out of hand. I have that mental fixation on things connected to artificial intelligence and neural networks. You can find the latest account in English in the update entitled « What are the practical outcomes of those hypotheses being true or false? ». If you speak French, there is a bit more, and more recent, in « Surpopulation sauvage ou compétition aux États-Unis ». Anyway, I did it. I made a neural network in order to simulate the behaviour of my financial concept. Below, I am presenting a graphical idea of that network. It combines a strictly spoken multilayer perceptron with components of deep learning: observation of the fitness function, and the feeding back of it, as well as selection and preference regarding different neural outputs of the network. I am using that neural network as a simulator of collective intelligence.


So, as I am assuming that we are collectively intelligent in our local communities, I make the following logical structure. Step 1: I take four input variables, as listed below. They are taken from real statistics about those 7 big Polish cities, named above – Wroclaw, Lodz, Krakow, Gdansk, Kielce, Poznan, Warsaw – over the period from 2008 through 2017.


Input variable 1: Investment outlays of the local government [mln]

Input variable 2: Overall expenses of the local government [mln]

Input variable 3: Population [headcount]

Input variable 4: Number of new business entities registered annually [coefficient]


In step 2, I attach to those real input variables an Output variable – Hypothetical variable: capital engaged in the local governments investment fund, initially calculated as if 5% of new business entities were financed with €100 000 each. I calculate the average value of that variable across the whole sample of 7 cities, and it makes €87 mln as expected value. This is the amount of money the average city among those seven could put in that local investment fund to support local startups and their projects of smart urban development.


In step 3, I run my neural network through the empirical data, and then I make it do additional 5000 experimental rounds, just to make it look for a match between the input variables – which can change as they want – and the output variable, which I have almost pegged at €87 mln. I say ‘almost’, as in practice the network will generate a bit of wobbling around those €87 mln. I want to see what possible configurations of the input variables can arise, through different patterns of collective learning, around that virtually pegged value of the output variable.


I hypothesise 5 different ways of learning, or 5 different selections in that Neuron 4 you can see in the picture above. Learning pattern #1 consists in systematically preferring the neural output of the sigmoid neural function. It is a type of function, which systematically calms down any shocks and sudden swings in input phenomena. It is like a collective pretention that whatever kind of s**t is really going on, everything is just fine. Learning pattern #2 prefers the output of the hyperbolic tangent function. This one tends to be honest, and when there is a shock, it yields a shock, without any f**kery about it. It is like a market with clear rules of competition. Learning pattern #3 takes the least error of the two functions. It is a most classical approach in neural networks. The closer I get to the expected value, the better I am learning, that sort of things. Learning pattern #4 makes an average of those two functions. The greatest value among those being averaged has the greatest impact on the resulting average. Thus, the average of two functions is like hierarchy of importance, expressed in one number. Finally, learning pattern #5 takes that average, just as #3, but it adds the component of growing resistance to new information. At each experimental round, it divides the value of the error fed back into the network by the consecutive number of the round. Error generated in round 2 gets divided by 2, and that generated in round 4000 is being divided by 4000 etc. This is like a person who, as they process new information, develops a growing sentiment of being fully schooled on the topic, and is more and more resistant to new input.


In the table below, I present the results of those simulations. Learning patterns #2 and #4 develop structures somehow more modest than the actual reality, expressed as empirical averages in the first numerical line of the table. These are urban communities, where that investment fund I am thinking about slightly grows in importance, in relation to the whole municipal budget. Learning patterns #1 and #3 develop crazy magnitudes in those input variables. Populations grow 9 or 10 times bigger than the present ones, the probability of having new businesses in each 10 000 people grows 6 or 7 times, and municipal budgets swell by 14 ÷ 15 times. The urban investment fund becomes close to insignificant. Learning pattern #5 goes sort of in the middle between those extremes.



  Input variable 1 Input variable 2 Input variable 3 Input variable 4 Output variable
Initial averages of empirical values  €177 mln  €996 mln                     721 083                               223  €87 mln
Type of selection in neural output Sample results of simulation with the neural network
Sigmoid preferred €2 440 mln €14 377 mln 7 093 526,21 1 328,83 €87 mln
Hyperbolic Tangent preferred €145 mln €908 mln 501 150,03 237,78 €87 mln
Least error preferred €2 213 mln €13 128 mln 6 573 058,50 1 490,28 €87 mln
Average of the two errors €122 mln €770 mln 432 702,57 223,66 €87 mln
Average of the two errors, with growing resistance to learning €845 mln €5 043 mln 2 555 800,36 661,61 €87 mln


What is the moral of the fairy tale? As I see it now, it means that for any given initial situation as for that financial scheme I have in mind for cities and their local governments, future development can go two opposite ways. The city can get sort of slightly smaller and smarter, with more or less the same occurrence of new businesses emerging every year. It happens when the local community learns, as a collective intelligence, with little shielding from external shocks. This is like a market-oriented city. In terms of quantitative dynamics, it makes me think about cities like Vienna (Austria), Lyon (France), or my home city, Krakow (Poland). On the other hand, the city can shield itself somehow against socio-economic shocks, for example with heavy subsidies, and then it gets out of control. It grows big like hell, and business starts just to pop around.


At the first sight, it seems counterintuitive. We associate market-based, open-to-shocks solutions with uncontrolled growth, and interventionist, counter-cyclical policies with sort of a tame status quo. Still, cities are strange beasts. They are like crocodiles. When you make them compete for food and territory, they grow just to a certain size, ‘cause when they grow bigger than that, they die. Yet, when you allow a crocodile to live in a place without much competition, and plenty of food around, it grows to enormous proportions.


My temporary conclusion is that my idea of a local investment fund to boost smart change in cities is workable, i.e. has the chances to thrive as a financial mechanism, when the whole city is open to market-based solutions and receives little shielding from economic shocks.


I am consistently delivering good, almost new science to my readers, and love doing it, and I am working on crowdfunding this activity of mine. As we talk business plans, I remind you that you can download, from the library of my blog, the business plan I prepared for my semi-scientific project Befund  (and you can access the French version as well). You can also get a free e-copy of my book ‘Capitalism and Political Power’ You can support my research by donating directly, any amount you consider appropriate, to my PayPal account. You can also consider going to my Patreon page and become my patron. If you decide so, I will be grateful for suggesting me two things that Patreon suggests me to suggest you. Firstly, what kind of reward would you expect in exchange of supporting me? Secondly, what kind of phases would you like to see in the development of my research, and of the corresponding educational tools?