The mind-blowing hydro

My editorial on You Tube

There is that thing about me: I am a strange combination of consistency and ADHD. If you have ever read one of Terry Pratchett’s novels from the ‘Discworld’ series, you probably know the imaginary character of golems: made of clay, with a logical structure – a ‘chem’ – put in their heads, they can work on something endlessly. In my head, there are chems, which just push me to do things over and over and over again. Writing and publishing on that research blog is very much in those lines. I can stop whenever I want, I just don’t want right now. Yet, when I do a lot about one chem, I start craving for another one, like nearby but not quite in the same intellectual location.

Right now, I am working on two big things. Firstly, I feel like drawing a provisional bottom line under those two years of science writing on my blog. Secondly, I want to put together an investment project that would help my city, my country and my continent, thus Krakow, Poland, and Europe, to face one of the big challenges resulting from climate change: water management. Interestingly, I started to work on the latter first, and only then I began to phrase out the former. I explain. As I work on that project of water management, which I provisionally named « Energy Ponds » (see, for example, « All hope is not lost: the countryside is still exposed »), I use the « Project Navigator », made available by the courtesy of the International Renewable Energy Agency (IRENA). The logic built into the « Project Navigator » makes me return, over and over again, to one central question: ‘You, Krzysztof Wasniewski, with your science and your personal energy, how are you aligned with that idea of yours? How can you convince other people to put their money and their personal energy into developing on your concept?’.

And so I am asking myself: ‘What’s your science, bro? What can you get people interested in, with rational grounds and intelligible evidence?’.

As I think about it, my first basic claim is that we can do it together in a smart way. We can act as a collective intelligence. This statement can be considered as a manifestation of the so-called “Bignetti model” in cognitive sciences (Bignetti 2014[1]; Bignetti et al. 2017[2]; Bignetti 2018[3]): for the last two years, I have been progressively centering my work around the topic of collective intelligence, without even being quite aware of it. As I was working on another book of mine, entitled “Capitalism and Political Power”, I came by that puzzling quantitative fact: as a civilization, we have more and more money per unit of real output[4], and, as I reviewed some literature, we seem not to understand why is that happening. Some scholars complain about the allegedly excessive ‘financialization of the economy’ (Krippner 2005[5]; Foster 2007[6]; Stockhammer 2010[7]), yet, besides easy generalizations about ‘greed’, or ‘unhinged race for profit’, no scientifically coherent explanation is offered regarding this phenomenon.

As I was trying to understand this phenomenon, shades of correlations came into my focus. I could see, for example, that growing an amount of money per unit of real output has been accompanied by growing an amount of energy consumed per person per year, in the global economy[8]. Do we convert energy into money, or the other way around? How can it be happening? In 2008, the proportion between the global supply of broad money, and the global real output passed the magical threshold of 100%. Intriguingly, the same year, the share of urban population in the total human population passed the threshold of 50%[9], and the share of renewable energy in the total final consumption of energy, at the global scale, took off for the first time since 1999, and keeps growing since then[10]. I started having that diffuse feeling that, as a civilization, we are really up to something, right now, and money is acting like a social hormone, facilitating change.

We change as we learn, and we learn as we experiment with the things we invent. How can I represent, in a logically coherent way, collective learning through experimentation? When an individual, or a clearly organized group learns through experimentation, the sequence is pretty straightforward: we phrase out an intelligible definition of the problem to solve, we invent various solutions, we test them, we sum up the results, we select seemingly the best solution among those tested, and we repeat the whole sequence. As I kept digging the topic of energy, technological change, and the velocity of money, I started formulating the outline of a complex hypothesis: what if we, humans, are collectively intelligent about building, purposefully, and semi – consciously, social structures supposed to serve as vessels for future collective experiments?

My second claim is that one of the smartest things we can do about climate change is, besides reducing our carbon footprint, to take proper care of our food and energy base. In Europe, climate change is mostly visible as a complex disruption to our water system, and we can observe it in our local rivers. That’s the thing about Europe: we have built our civilization, on this tiny, mountainous continent, in close connection with rivers. Right, I can call them scientifically ‘inland waterways’, but I think that when I say ‘river’, anybody who reads it understands intuitively. Anyway, what we call today ‘the European heritage’ has grown next to EVENLY FLOWING rivers. Once again: evenly flowing. It means that we, Europeans, are used to see the neighbouring river as a steady flow. Streams and creeks can overflow after heavy rains, and rivers can swell, but all that stuff had been happening, for centuries, very recurrently.

Now, with the advent of climate change, we can observe three water-related phenomena. Firstly, as the English saying goes, it never rains but it pours. The steady rhythm and predictable volume of precipitations we are used to, in Europe (mostly in the Northern part), progressively gives ground to sudden downpours, interspersed with periods of drought, hardly predictable in their length. First moral of the fairy tale: if we have less and less of the kind of water that falls from the sky slowly and predictably, we need to learn how to capture and retain the kind of water that falls abruptly, unscheduled. Secondly, just as we have adapted somehow to the new kind of sudden floods, we have a big challenge ahead: droughts are already impacting, directly and indirectly, the food market in Europe, but we don’t have enough science yet to predict accurately neither their occurrence nor their local impact. Yet, there is already one emerging pattern: whatever happens, i.e. floods or droughts, rural populations in Europe suffer more than the urban ones (see my review of literature in « All hope is not lost: the countryside is still exposed »). Second moral of the fairy tale: whatever we do about water management in these new conditions, in Europe, we need to take care of agriculture first, and thus to create new infrastructures so as to shield farms against floods and droughts, cities coming next in line.

Thirdly, the most obviously observable manifestation of floods and droughts is variation in the flow of local rivers. By the way, that variation is already impacting the energy sector: when we have too little flow in European rivers, we need to scale down the output of power plants, as they have not enough water to cool themselves. Rivers are drainpipes of the neighbouring land. Steady flow in a river is closely correlated with steady a level of water in the ground, both in the soil, and in the mineral layers underneath. Third moral of the fairy tale: if we figure out workable ways of retaining as much rainfall in the ground as possible, we can prevent all the three disasters in the same time, i.e. local floods, droughts, and economically adverse variations in the flow of local rivers.           

I keep thinking about that ownership-of-the-project thing I need to cope with when using the « Project Navigator » by IRENA. How to make local communities own, as much as possible, both the resources needed for the project, and its outcomes? Here, precisely, I need to use my science, whatever it is. People at IRENA have experience in such project, which I haven’t. I need to squeeze my brain and extract thereof any useful piece of coherent understanding, to replace experience. I am advancing step by step. I intuitively associate ownership with property rights, i.e. with a set of claims on something – things or rights – together with a set of liberties of action regarding the same things or rights. Ownership from the part of a local community means that claims and liberties should be sort of pooled, and the best idea that comes to my mind is an investment fund. Here, a word of explanation is due: an investment fund is a general concept, whose actual, institutional embodiment can take the shape of a strictly speaking investment fund, for one, and yet other legal forms are possible, such as a trust, a joint stock company, a crowdfunding platform, or even a cryptocurrency operating in a controlled network. The general concept of an investment fund consists in taking a population of investors and making them pool their capital resources over a set of entrepreneurial projects, via the general legal construct of participatory titles: equity-based securities, debt-based ones, insurance, futures contracts, and combinations thereof. Mind you, governments are investment funds too, as regards their capacity to move capital around. They somehow express the interest of their respective populations in a handful of investment projects, they take those populations’ tax money and spread it among said projects. That general concept of investment fund is a good expression of collective intelligence. That thing about social structure for collective experimentation, which I mentioned a few paragraphs ago, an investment fund is an excellent example. It allows spreading resources over a number of ventures considered as local experiments.

Now, I am dicing a few ideas for a financial scheme, based on the general concept of an investment fund, as collectively intelligent as possible, in order to face the new challenges of climate change, through new infrastructures for water management. I start with reformulating the basic technological concept. Water powered water pumps are immersed in the stream of a river. They use the kinetic energy of that stream to pump water up and further away, more specifically into elevated water towers, from which that water falls back to the ground level, as it flows down it powers relatively small hydroelectric turbines, and ends up in a network of ponds, vegetal complexes and channel-like ditches, all that made with a purpose of retaining as much water as possible. Those structures can be connected to others, destined directly to capture rainwater. I was thinking about two setups, respectively for rural environments and for the urban ones. In the rural landscape, those ponds and channels can be profiled so as to collect rainwater from the surface of the ground and conduct it into its deeper layers, through some system of inverted draining. I think it would be possible, under proper geological conditions, to reverse-drain rainwater into deep aquifers, which the neighbouring artesian wells can tap into. In the urban context, I would like to know more about those Chinese technologies used in their Sponge Cities programme (see Jiang et al. 2018[11]).

The research I have done so far suggests that relatively small, local projects work better, for implementing this type of technologies, than big, like national scale endeavours. Of course, national investment programmes will be welcome as indirect support, but at the end of the day, we need a local community owning a project, possibly through an investment-fund-like institutional arrangement. The economic value conveyed by any kind of participatory title in such a capital structure sums up to the Net Present Value of three cash flows: net proceeds from selling hydroelectricity produced in small water turbines, reduction of the aggregate flood-related risk, as well as of the drought-related risk. I separate risks connected to floods from those associated with droughts, as they are different in nature. In economic and financial terms, floods are mostly a menace to property, whilst droughts materialize as more volatile prices of food and basic agricultural products.

In order to apprehend accurately the Net Present Value of any cash flow, we need to set a horizon in time. Very tentatively, by interpreting data from 2012, presented in a report published by IRENA (the same IRENA), I assume that relatively demanding investors in Europe expect to have a full return on their investment within 6,5 years, which I make 7 years, for the sake of simplicity. Now, I go a bit off the beaten tracks, at least those I have beaten so far. I am going to take the total atmospheric precipitations falling on various European countries, which means rainfall + snowfall, and then try to simulate what amount of ‘NPV = hydroelectricity + reduction of risk from floods and droughts’(7 years) could the retention of that water represent.

Let’s walse. I take data from FAOSTAT regarding precipitations and water retention. As a matter of fact, I made a query of that data regarding a handful of European countries. You can have a look at the corresponding Excel file UNDER THIS LINK. I rearranged bit the data from this Excel file so as to have a better idea of what could happen, if those European countries I have on my list, my native Poland included, built infrastructures able to retain 2% of the annual rainfall. The coefficient of 2% is vaguely based on what Shao et al. (2018[12]) give as the target retention coefficient for the city of Xiamen, China, and their Sponge-City-type investment. I used the formulas I had already phrased out in « Sponge Cities », and in « La marge opérationnelle de $1 539,60 par an par 1 kilowatt », to estimate the amount of electricity possible to produce out of those 2% of annual rainfall elevated, according to my idea, into 10-metres-high water towers. On the top of all that, I added, for each country, data regarding the already existing capacity to retain water. All those rearranged numbers, you can see them in the Excel file UNDER THIS OTHER LINK (a table would be too big for inserting into this update).   

The first provisional conclusion I have to make is that I need to revise completely my provisional conclusion from « Sponge Cities », where I claimed that hydroelectricity would have no chance to pay for any significant investment in sponge-like structures for retaining water. The calculations I have just run show just the opposite: as soon as we consider whole countries as rain-retaining basins, the hydroelectric power, and the cash flow dormant in that water is just mind-blowing. I think I will need to get a night of sleep just to check on the accuracy of my calculations.

Deranging as they are, my calculations bear another facet. I compare the postulated 2% of retention in annual precipitations with the already existing capacity of these national basins to retain water. That capacity is measured, in that second Excel file, by the ‘Coefficient of retention’, which denominates the ‘Total internal renewable water resources (IRWR)’ over the annual precipitation, both in 10^9 m3/year. My basic observation is that European countries have a capacity to retain water very similar in disparity to the intensity of precipitations, measured in mm per year. Both coefficients vary in a similar proportion, i.e. their respective standard deviations make around 0,4 of their respective means, across the sample of 37 European countries. When I measure it with the Pearson coefficient of correlation between the intensity of rainfall and the capacity to retain it , it yields r = 0,63. In general, the more water falls from the sky per 1 m2, the greater percentage of that water is retained, as it seems. Another provisional conclusion I make is that the capacity to retain water, in a given country, is some kind of response, possibly both natural and man-engineered, to a relatively big amount of water falling from the sky. It looks as if our hydrological structures, in Europe, had been built to do something with water we have momentarily plenty of, possibly even too much of, and which we should save for later.

I am consistently delivering good, almost new science to my readers, and love doing it, and I am working on crowdfunding this activity of mine. You can communicate with me directly, via the mailbox of this blog: As we talk business plans, I remind you that you can download, from the library of my blog, the business plan I prepared for my semi-scientific project Befund  (and you can access the French version as well). You can also get a free e-copy of my book ‘Capitalism and Political Power’ You can support my research by donating directly, any amount you consider appropriate, to my PayPal account. You can also consider going to my Patreon page and become my patron. If you decide so, I will be grateful for suggesting me two things that Patreon suggests me to suggest you. Firstly, what kind of reward would you expect in exchange of supporting me? Secondly, what kind of phases would you like to see in the development of my research, and of the corresponding educational tools?

[1] Bignetti, E. (2014). The functional role of free-will illusion in cognition:“The Bignetti Model”. Cognitive Systems Research, 31, 45-60.

[2] Bignetti, E., Martuzzi, F., & Tartabini, A. (2017). A Psychophysical Approach to Test:“The Bignetti Model”. Psychol Cogn Sci Open J, 3(1), 24-35.

[3] Bignetti, E. (2018). New Insights into “The Bignetti Model” from Classic and Quantum Mechanics Perspectives. Perspective, 4(1), 24.

[4] last access July 15th, 2019

[5] Krippner, G. R. (2005). The financialization of the American economy. Socio-economic review, 3(2), 173-208.

[6] Foster, J. B. (2007). The financialization of capitalism. Monthly Review, 58(11), 1-12.

[7] Stockhammer, E. (2010). Financialization and the global economy. Political Economy Research Institute Working Paper, 242, 40.

[8] last access July 15th, 2019

[9] last access July 15th, 2019

[10] last access July 15th, 2019

[11] Jiang, Y., Zevenbergen, C., & Ma, Y. (2018). Urban pluvial flooding and stormwater management: A contemporary review of China’s challenges and “sponge cities” strategy. Environmental science & policy, 80, 132-143.

[12] Shao, W., Liu, J., Yang, Z., Yang, Z., Yu, Y., & Li, W. (2018). Carbon Reduction Effects of Sponge City Construction: A Case Study of the City of Xiamen. Energy Procedia, 152, 1145-1151.

La marge opérationnelle de $1 539,60 par an par 1 kilowatt

Mon éditorial sur You Tube

Alors, je change un peu d’azimut. Dans « All hope is not lost: the countryside is still exposed » j’ai présenté une revue de littérature à propos des risques liées aux inondations et aux sécheresses en Europe. Il paraît que ces risques sont très différents de ce que je pensais qu’ils étaient. Comme quoi, il est bon de ne pas céder à l’hystérie collective et d’étudier patiemment la science que nous avons à notre disposition. Je reviens donc un peu sur les propos que j’ai exprimés dans « Le cycle d’adaptation ». J’avais écrit que les infrastructures urbaines en Europe sont parfaitement adaptées aux conditions climatiques qui n’existent plus : maintenant je reviens et je nuance sur ce propos. Oui, les villes européennes ont besoin d’adaptation aux changements climatiques, mais elles sont en train de s’adapter déjà. En revanche, la partie majeure des pertes humaines et matérielles suite d’inondations et de sécheresses survient en dehors des grandes villes, dans les endroits ruraux. La sécheresse, ça frappe les agriculteurs bien avant que ça frappe les citadins. Lorsque les habitants des villes voient l’eau manquer dans leurs robinets, les agriculteurs en sont déjà à faire la solde des pertes dues aux récoltes plus modestes que d’habitude.

Le Navigateur des Projets, accessible à travers la page de « International Renewable Energy Agency », m’a fait réfléchir sur les objectifs communs autour desquels les communautés locales d’Europe peuvent s’organiser pour développer des projets comme mon concept d’Étangs Énergétiques. Maintenant, après une revue de littérature, je pense qu’un objectif rationnel est de construire des infrastructures aquatiques, pour stocker l’eau de pluie ainsi que produire et stocker l’hydroélectricité, dans des régions rurales, pour protéger l’agriculture et indirectement protéger les ressources hydrologiques des villes.

Vous pouvez lire dans « All hope is not lost: the countryside is still exposed » que la littérature scientifique n’est pas tout à fait d’accord sur les risques liés à la sécheresse en Europe. Néanmoins, la science à ses limites méthodologiques : elle peut dire quelque chose à coup sûr seulement si les données empiriques sont suffisamment abondantes et claires pour vérifier les hypothèses statistiquement comme il faut. Les données empiriques que nous avons à propos des sécheresses en Europe et de leurs effets économiques souffrent de l’effet pervers de notre capacité d’adaptation. J’explique. Pour une preuve statistique vraiment rigoureuse, il faut que les distributions d’erreurs locales des différentes variables soient mutuellement indépendantes (donc pas de corrélation significative entre les erreurs d’estimation de variable A et celles de variable B) et aléatoires, donc dispersées au moins aussi largement que le suggère la distribution normale. L’erreur d’estimation de l’humidité résiduelle du sol, par exemple, doit être aléatoire et indépendante de l’erreur d’estimation de la récolte de blé. Eh bien, à en croire Webber et al. (2018[1]), il n’en est pas le cas : les bases de données qui croisent du météo et hydrologie avec de l’agriculture rendent des corrélations significatives entre les erreurs d’estimation après régression linéaire d’une variable sur les autres. Pourquoi ? Mon explication intuitive à moi est que nous, les humains, on réagit vite lorsque notre base de bouffe est menacée. Nous réagissons tellement vite, à travers les modifications des technologies agriculturales, que nous induisons de la corrélation entre le climat et la récolte.

Lorsque la rigueur scientifique nous fait défaut, c’est une bonne idée de tourner vers l’observation plus élémentaire et plus anecdotique. Je passe en revue les actualités du marché agricole. Chez moi, en Pologne, la récolte des fruits menace d’être plus basse de 30% par rapport aux pronostics faits au mois de Mai[2]. La récolte céréalière peut baisser entre 8% et même 40% par rapport à celle de l’année dernière, suivant la région exacte du pays[3]. En France, selon Europe 1, l’alerte sécheresse dans l’agriculture est devenue quelque chose de normal[4]. Je passe aux prix des contrats à terme sur les biens agricoles de base. Le blé, contrats MATIF, donc le marché européen, ça s’agite cette année. La tendance des dernières semaines est à la hausse des prix, comme si les traders prévoyaient un déficit d’offre en Europe. Les contrats MATIF sur le maïs montrent à peu de choses près la même tendance. En revanche, les contrats CBOT sur blé, émis par CME Group et basés sur le marché américain, montrent une tendance plus décidément ascendante dans le long terme quoi que descendante dans l’immédiat. Ah, je viens de regarder les prix CBOT dernière minute sur*0/futures-prices: ça grimpe aujourd’hui dans la matinée. Voilà donc que je cerne le risque qui correspond à la sécheresse en Europe : c’est le risque de volatilité croissante des prix agricoles. Si je veux approcher ce risque de façon analytique, je peux essayer d’estimer, par exemple, la valeur du marché d’un instrument financier hypothétique – comme un contrat à terme ou une option – qui paie lorsque les prix restent dans l’intervalle désiré et apporte des pertes lorsque les prix vont hors de cet intervalle.

Je généralise l’approche financière à mon concept d’Étangs Énergétiques. Je pense que l’investissement qui a des chances de gagner le support d’acteurs sociaux est celui dont la Valeur Actuelle Nette – pour un cycle de vie utile de l’infrastructure de « m » années – est égale à NPV(m) = vente d’hydroélectricité (m) + réduction du risque lié aux inondations (m) + réduction du risque lié aux sècheresses (m). En ce qui concerne les revenus de la vente d’électricité – disons que j’appelle ces revenus VE(m) – le calcul est comme suit : VE(m) = puissance en kilowatts * 365 jours * 24 heures * prix de marché d’électricité = {flux par seconde en litres (ou en kilogrammes d’eau, revient au même) * constante gravitationnelle a = 9,81 * dénivellation en mètres / 1000} * 365 jours * 24 heures * prix de marché d’électricité (consultez « Sponge Cities »). Chez moi, en Pologne – avec 1 kilowatt heure achetée à un prix total d’à peu près $0,21 – 1 kilowatt de puissance génératrice représente un revenu de : 8760 heures dans l’année multipliées par $0,21 par kilowatt heure égale $1 839,60 par an.

Pour autant que j’ai pu me renseigner dans une publication par IRENA, l’investissement nécessaire en hydro-génération est d’à peu près $1500 ÷ $3000 par 1 kilowatt de puissance, à l’échelle mondiale. Cette moyenne globale représente un éventail assez étendu d’investissement par kilowatt, en fonction de la région géographique, de la puissance totale installée dans l’installation donnée, ainsi que de la dénivellation du cours d’eau correspondant. Pour des raisons que je n’ai pas encore étudié en détail, l’investissement requis par 1 kilowatt de puissance dans les installations classées comme petites varie le plus en Europe, en comparaison aux autres régions du monde. En partant de ce seuil général d’à peu près $1500 l’investissement requis par 1 kilowatt peut aller même jusqu’à $8000. Allez savoir pourquoi. Ce plafond maximum est deux fois plus élevé que ce qui est reporté dans quelle autre région du monde que ce soit.

La dénivellation naturelle du cours d’eau où la turbine hydroélectrique est installée joue son rôle. Dans des endroits vraiment plats, où la seule façon d’avoir un peu de force dans ce flux d’eau est de pomper l’eau dans des réservoirs élevés, l’investissement pour les petites turbines de moins de 50 kilowatts est d’environ $5400 par kilowatt, comme moyenne mondiale. Ça tombe vite à mesure que la dénivellation va de quasi-zéro vers et au-dessus de 25 mètres et ensuite ça tombe de plus en plus gentiment.

À part le retour requis sur l’investissement, le coût complet d’une kilowatt heure contient celui de maintenance et de gestion opérationnelle. Selon le même rapport d’IRENA, ce coût peut atteindre, dans des conditions plutôt pessimistes, comme $300 par an par 1 kilowatt de puissance installée. Après la déduction de ce coût le flux annuel de revenu des ventes d’électricité tourne en un flux de marge opérationnelle égal à $1 839,60 – $300 =  $1 539,60 par an. Quelques pages plus loin, toujours dans la même publication d’IRENA je trouve que le coût actualisé d’énergie, « LCOE » pour les amis, peut se ranger en Europe entre $0,05 et $0,17. Le coût de maintenance et de gestion opérationnelle, qui fait partie de LCOE, est de $300 par an par 1 kilowatt de puissance installée, divisé par 8760 dans l’année, donc $0,03 par kilowatt heure. Par conséquent, la partie « retour sur investissement » du LCOE peut varier entre $0,05 – $0,03 = $0,02 et $0,17 – $0,03 = $0,14 par kilowatt heure. Ce retour sur investissement, je le multiplie par 8760 heures dans l’année, pour obtenir le retour requis par an sur l’investissement en 1 kilowatt de puissance. Ça donne un intervalle entre $175,20 et $1 226,40 par an. Ceci me donne deux informations importantes. Premièrement, la marge opérationnelle de $1 539,60 par anest suffisante pour satisfaire même les projections financières des plus exigeantes.

Deuxièmement, longue histoire courte, comme disent les Anglo-Saxons, je prends l’investissement le plus coûteux possible, donc sur mon continent à moi (l’Europe), donc $8000, et je divise par cette fourchette des retours annuels. Ça tombe entre $8000/$1226,40 et $8000/$175,20, soit entre 6,5 et 46 années. Bon, disons que les 46 années c’est de l’abstrait. En fait, tout ce qui va plus loin que 20 ans, dans les investissements en la génération d’énergie, c’est tout simplement l’absence d’égard au retour sur l’investissement strictement dit. Ce qui m’intéresse c’est la dent inférieure de la fourchette, donc les 6,52 années. Je prends cet intervalle de temps comme benchmark du retour espéré par les investisseurs les plus exigeants. Par ailleurs, là, il est bon de rappeler quelque chose comme un paradoxe : plus vite vont se développer les technologies des turbines hydroélectriques, plus court sera le temps de vie morale de toute technologie spécifique, donc plus court sera le temps alloué au retour sur l’investissement.     

Une conclusion partielle que je peux tirer de ces calculs, à propos de mon projet « Étangs Énergétiques » est que les ventes d’électricité produite dans les turbines hydroélectriques faisant partie de l’infrastructure prévue peuvent constituer une motivation claire pour des investisseurs potentiels, à condition toutefois de maintenir la taille de l’investissement local dans les dizaines des milliers des dollars plutôt que dans les milliards que dépense le gouvernement Chinois sur le projet des « Sponge Cities ».

Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ? Vous pouvez me contacter à travers la boîte électronique de ce blog : .

[1] Webber, H., Ewert, F., Olesen, J. E., Müller, C., Fronzek, S., Ruane, A. C., … & Ferrise, R. (2018). Diverging importance of drought stress for maize and winter wheat in Europe. Nature communications, 9(1), 4249.

[2],173565.html dernier accès 16 Juillet 2019

[3],160018.html dernier accès 16 Juillet 2019

[4] dernier accès 16 Juillet 2019

All hope is not lost: the countryside is still exposed

My editorial on You Tube

I am focusing on the possible benefits of transforming urban structures of at least some European cities into sponge-like structures, such as described, for example, by Jiang et al. (2018) as well as in my recent updates on this blog (see Sponge Cities). In parallel to reporting my research on this blog, I am developing a corresponding project with the « Project Navigator », made available by the courtesy of the International Renewable Energy Agency (IRENA). Figuring out my way through the « Project Navigator » made me aware of the importance that social cohesion has in the implementation of such infrastructural projects. Social cohesion means a set of common goals, and an institutional context that allows the appropriation of outcomes. In « Sponge Cities », when studying the case of my hometown, Krakow, Poland, I came to the conclusion that sales of electricity from water turbines incorporated into the infrastructure of a sponge city could hardly pay off for the investment needed. On the other hand, significant reduction of the financially quantifiable risk connected to floods and droughts can be an argument. Especially the flood-related risks, in Europe, already amount to billions of euros, and we seem to be just at the beginning of the road (Alfieri et al. 2015[1]). Shielding against such risks can possibly make a sound base for social coherence, as a common goal. Hence, as I am structuring the complex concept of « Energy Ponds », I start with assessing risks connected to climate change in European cities, and the possible reduction of those risks through sponge-city-type investments.

I start with comparative a review of Alfieri et al. 2015[2] as regards flood-related risks, on the one hand, and Naumann et al. (2015[3]) as well as Vogt et al. (2018[4]) regarding the drought-related risks. As a society, in Europe, we seem to be more at home with floods than with droughts. The former is something we kind of know historically, and with the advent of climate change we just acknowledge more trouble in that department, whilst the latter had been, until recently, something that happens essentially to other people on other continents. The very acknowledgement of droughts as a recurrent risk is a challenge.

Risk is a quantity: this is what I teach my students. It is the probability of occurrence multiplied by the magnitude of damage, should the s**t really hit the fan. Why adopting such an approach? Why not to assume that risk is just the likelihood of something bad happening? Well, because risk management is practical. There is any point in bothering about risk if we can do something about it: insure and cover, hedge, prevent etc. The interesting thing about it is that all human societies show a recurrent pattern: as soon as we organise somehow, we create something like a reserve of resources, supposed to provide for risk. We are exposed to a possible famine? Good, we make a reserve of food. We risk to be invaded by a foreign nation/tribe/village/alien civilisation? Good, we make an army, i.e. a group of people, trained and equipped for actions with no immediate utility, just in case. The nearby river can possibly overflow? Good, we dig and move dirt, stone, wood and whatnot so as to build stopbanks. In each case, we move along the same path: we create a pooled reserve of something, in order to minimize the long-term damage from adverse events.

Now, if we wonder how much food we need to have in stock in case of famine, sooner or later we come to the conclusion that it is individual need for food multiplied by the number of people likely to be starving. That likelihood is not evenly distributed across the population: some people are more exposed than others. A farmer, with a few pigs and some potatoes in cultivation is less likely to be starving than a stonemason, busy to build something and not having time or energy to care for producing food. Providing for the risk of flood works according to the same scheme: some structures and some people are more likely to suffer than others.

We apprehend flood and drought-related risks in a similar way: those risks amount to a quantity of resources we put aside, in order to provide for the corresponding losses, in various ways. That quantity is the arithmetical product of probability times magnitude of loss.    

Total risk is a complex quantity, resulting from events happening in causal, heterogeneous chains. A river overflows and destroys some property: this is direct damage, the first occurrence in the causal chain. Among the property damaged, there are garbage yards. As water floods them, it washes away and further into the surrounding civilisation all kinds of crap, properly spoken crap included. The surrounding civilisation gets contaminated, and decontamination costs money: this is indirect damage, the second tier of the causal chain. Chemical and biological contamination by floodwater causes disruptions in the businesses involved, and those disruptions are costly, too: here goes the third tier in the causal chain etc.

I found some interesting insights, regarding the exposure to flood and drought-related risks in Europe, with Paprotny et al. (2018[5]). Firstly, this piece of research made me realized that floods and droughts do damage in very different ways. Floods are disasters in the most intuitive sense of the term: they are violent, and they physically destroy man-made structures. The magnitude of damage from floods results from two basic variables: the violence and recurrence of floods themselves, on the one hand, and the value of human structures affected. In a city, a flood does much more damage because there is much more property to destroy. Out there, in the countryside, damages inflicted by floods change from the disaster-type destruction into more lingering, long-term impediments to farming (e.g. contamination of farmed soil), as the density of man-made structures subsides. Droughts work insidiously. There is no spectacular disaster to be afraid of. Adverse outcomes build up progressively, sometimes even year after year. Droughts affect directly the countryside much more than the cities, too. It is rivers drying out first, and only in a second step, cities experiencing disruptions in the supply of water, or of the rivers-dependent electricity. It is farm soil drying out progressively, and farmers suffering some damage due to lower crops or increased costs of irrigation, and only then the city dwellers experiencing higher prices for their average carrot or an organic cereal bar. Mind you, there is one type of drought-related disaster, which sometimes can directly affect our towns and cities: forest fires.

Paprotny et al. (2018) give some detailed insights into the magnitude, type, and geographical distribution of flood-related risks in Europe. Firstly, the ‘where exactly?’. France, Spain, Italy, and Germany are the most affected, with Portugal, England, Scotland, Poland, Czech Republic, Hungary, Romania and Portugal following closely behind. As to the type of floods, France, Spain, and Italy are exposed mostly to flash floods, i.e. too much rain falling and not knowing where to go. Germany and virtually all of Central Europe, my native Poland included, are mostly exposed to river floods. As for the incidence of human fatalities, flash-floods are definitely the most dangerous, and their impact seems to be the most serious in the second half of the calendar year, from July on.

Besides, the research by Paprotny et al. (2018) indicates that in Europe, we seem to be already on the path of adaptation to floods. Both the currently observed losses –human and financial – and their 10-year, moving average had their peaks between 1960 and 2000. After 2000, Europe seems to have been progressively acquiring the capacity to minimize the adverse impact of floods, and this capacity seems to have developed in cities more than in the countryside. It truly gives a man a blow, to their ego, when they learn the problem they want to invent a revolutionary solution to does not really exist. I need to return on that claim I made in the « Project Navigator », namely that European cities are perfectly adapted to a climate that does no longer exist. Apparently, I was wrong: European cities seem to be adapting quite well to the adverse effects of climate change. Yet, all hope is not lost. The countryside is still exposed. Now, seriously. Whilst Europe seem to be adapting to greater an occurrence of floods, said occurrence is most likely to increase, as suggested, for example, in the research by Alfieri et al. (2017[6]). That sends us to the issue of limits to adaptation and the cost thereof.

Let’s rummage through more literature. As I study the article by Lu et al. (2019[7]), which compares the relative exposure to future droughts in various regions of the world, I find, first of all, the same uncertainty which I know from Naumann et al. (2015), and Vogt et al. (2018): the economically and socially important drought is a phenomenon we just start to understand, and we are still far from understanding it sufficiently to assess the related risks with precision. I know that special look that empirical research has when we don’t really have a clue what we are observing. You can see it in the multitude of analytical takes on the same empirical data. There are different metrics for detecting drought, and by Lu et al. (2019) demonstrate that assessment of drought-related losses heavily depends on the metric used. Once we account for those methodological disparities, some trends emerge. Europe in general seems to be more and more exposed to long-term drought, and this growing exposure seems to be pretty consistent across various scenarios of climate change. Exposure to short-term episodes of drought seems to be growing mostly under the RCP 4.5 and RCP 6.0 climate change scenarios, a little bit less under the RCP 8.5 scenario. In practical terms it means that even if we, as a civilisation, manage to cut down our total carbon emissions, as in the RCP 4.5. climate change scenario, the incidence of drought in Europe will be still increasing. Stagge et al. (2017[8]) point out that exposure to drought in Europe diverges significantly between the Mediterranean South, on the one hand, and the relatively colder North. The former is definitely exposed to an increasing occurrence of droughts, whilst the latter is likely to experience less frequent episodes. What makes the difference is evapotranspiration (loos of water) rather than precipitation. If we accounted just for the latter, we would actually have more water

I move towards more practical an approach to drought, this time as an agricultural phenomenon, and I scroll across the article on the environmental stress on winter wheat and maize, in Europe, by Webber et al. (2018[9]). Once again, I can see a lot of uncertainty. The authors put it plainly: models that serve to assess the impact of climate change on agriculture violate, by necessity, one of the main principles of statistical hypotheses-testing, namely that error terms are random and independent. In these precise models, error terms are not random, and not mutually independent. This is interesting for me, as I have that (recent) little obsession with applying artificial intelligence – a modest perceptron of my own make – to simulate social change. Non-random and dependent error terms are precisely what a perceptron likes to have for lunch. With that methodological bulwark, Webber et al. (2018) claim that regardless the degree of the so-called CO2 fertilization (i.e. plants being more active due to the presence of more carbon dioxide in the air), maize in Europe seems to be doomed to something like a 20% decline in yield, by 2050. Winter wheat seems to be rowing on a different boat. Without the effect of CO2 fertilization, a 9% decline in yield is to expect, whilst with the plants being sort of restless, and high on carbon, a 4% increase is in view. With Toreti et al. (2019[10]), more global a take is to find on the concurrence between climate extremes, and wheat production. It appears that Europe has been experiencing increasing an incidence of extreme heat events since 1989, and until 2015 it didn’t seem to affect adversely the yield of wheat. Still, since 2015 on, there is a visible drop in the output of wheat. Even stiller, if I may say, less wheat is apparently compensated by more of other cereals (Eurostat[11], Schills et al. 2018[12]), and accompanied by less potatoes and beets.

When I first started to develop on that concept, which I baptised “Energy Ponds”, I mostly thought about it as a way to store water in rural areas, in swamp-and-meadow-like structures, to prevent droughts. It was only after I read a few articles about the Sponge Cities programme in China that I sort of drifted towards that more urban take on the thing. Maybe I was wrong? Maybe the initial concept of rural, hydrological structures was correct? Mind you, whatever we do in Europe, it always costs less if done in the countryside, especially regarding the acquisition of land.

Even in economics, sometimes we need to face reality, and reality presents itself as a choice between developing “Energy Ponds” in urban environment, or in rural one. On the other hand, I am rethinking the idea of electricity generated in water turbines paying off for the investment. In « Sponge Cities », I presented a provisional conclusion that it is a bad idea. Still, I was considering the size of investment that Jiang et al. (2018) talk about in the context of the Chinese Sponge-Cities programme. Maybe it is reasonable to downsize a bit the investment, and to make it sort of lean and adaptable to the cash flow possible to generate out of selling hydropower.    

I am consistently delivering good, almost new science to my readers, and love doing it, and I am working on crowdfunding this activity of mine. You can communicate with me directly, via the mailbox of this blog: As we talk business plans, I remind you that you can download, from the library of my blog, the business plan I prepared for my semi-scientific project Befund  (and you can access the French version as well). You can also get a free e-copy of my book ‘Capitalism and Political Power’ You can support my research by donating directly, any amount you consider appropriate, to my PayPal account. You can also consider going to my Patreon page and become my patron. If you decide so, I will be grateful for suggesting me two things that Patreon suggests me to suggest you. Firstly, what kind of reward would you expect in exchange of supporting me? Secondly, what kind of phases would you like to see in the development of my research, and of the corresponding educational tools?

[1] Alfieri, L., Feyen, L., Dottori, F., & Bianchi, A. (2015). Ensemble flood risk assessment in Europe under high end climate scenarios. Global Environmental Change, 35, 199-212.

[2] Alfieri, L., Feyen, L., Dottori, F., & Bianchi, A. (2015). Ensemble flood risk assessment in Europe under high end climate scenarios. Global Environmental Change, 35, 199-212.

[3] Gustavo Naumann et al. , 2015, Assessment of drought damages and their uncertainties in Europe, Environmental Research Letters, vol. 10, 124013, DOI

[4] Vogt, J.V., Naumann, G., Masante, D., Spinoni, J., Cammalleri, C., Erian, W., Pischke, F., Pulwarty, R., Barbosa, P., Drought Risk Assessment. A conceptual Framework. EUR 29464 EN, Publications Office of the European Union, Luxembourg, 2018. ISBN 978-92-79-97469-4, doi:10.2760/057223, JRC113937

[5] Paprotny, D., Sebastian, A., Morales-Nápoles, O., & Jonkman, S. N. (2018). Trends in flood losses in Europe over the past 150 years. Nature communications, 9(1), 1985.

[6] Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., … & Feyen, L. (2017). Global projections of river flood risk in a warmer world. Earth’s Future, 5(2), 171-182.

[7] Lu, J., Carbone, G. J., & Grego, J. M. (2019). Uncertainty and hotspots in 21st century projections of agricultural drought from CMIP5 models. Scientific reports, 9(1), 4922.

[8] Stagge, J. H., Kingston, D. G., Tallaksen, L. M., & Hannah, D. M. (2017). Observed drought indices show increasing divergence across Europe. Scientific reports, 7(1), 14045.

[9] Webber, H., Ewert, F., Olesen, J. E., Müller, C., Fronzek, S., Ruane, A. C., … & Ferrise, R. (2018). Diverging importance of drought stress for maize and winter wheat in Europe. Nature communications, 9(1), 4249.

[10] Toreti, A., Cronie, O., & Zampieri, M. (2019). Concurrent climate extremes in the key wheat producing regions of the world. Scientific reports, 9(1), 5493.

[11] last access July 14th, 2019

[12] Schils, R., Olesen, J. E., Kersebaum, K. C., Rijk, B., Oberforster, M., Kalyada, V., … & Manolov, I. (2018). Cereal yield gaps across Europe. European journal of agronomy, 101, 109-120.

Le cycle d’adaptation

Mon éditorial sur You Tube

Je développe sur mon concept d’Étangs Énergétiques (voir « La ville éponge » et « Sponge Cities »). J’ai décidé d’utiliser le Navigateur des Projets, accessible à travers la page de « International Renewable Energy Agency ». La création d’un projet, à travers cette fonctionnalité, contient 6 étapes : a) identification b) analyse stratégique c) évaluation d) sélection e) pré-développement et f) développement proprement dit.

Le long de ce chemin conceptuel, on peut utiliser des exemples et études des cas accessibles à travers la sous-page intitulée « Learning Section ». Pour le moment, je me concentre sur la première phase, celle d’identification. Je liste les questions correspondantes d’abord, telles qu’elles sont présentées dans le Navigateur des Projets et après j’essaie d’y répondre. 

Questions de la phase d’identification du projet :

Groupes sociaux impliqués

Qui est impliqué dans le projet ? (gouvernement central, gouvernements locaux et communautés locales, investisseurs professionnels etc.)

Qui contrôle les résultats du projet et les bénéfices qui en découlent ?

Quels besoins externes doivent être satisfaits pour assurer le succès du projet ?

Quels groupes-cibles sont directement affectés par le projet ?

Qui sont les bénéficiaires ultimes du projet à long terme ?


Quel est le problème essentiel que le projet prend pour objectif de résoudre ?

Quelles sont ses causes ?

Quels sont les conséquences du problème essentiel ?


Quelle est la situation désirée que le projet doit aider à atteindre ?

Quelles sont les effets directs de la situation désirée ?

Quelles sont les retombées indirectes de la situation désirée ?

Quelles moyens et méthodes doivent être appliqués pour atteindre la situation désirée ?


Quelles actions alternatives peuvent-elles être envisagées ?

Quelle est la stratégie essentielle du projet ?

Comme j’essaie de répondre en ordre à ces questions, un désordre salutaire s’immisce et me fait formuler cette observation générale : dans la plupart des villes européennes, les infrastructures en place pour le drainage d’eau de pluie et la provision d’eau potable sont adaptées, et même très bien adaptées, à un climat qui n’existe plus qu’à peine. Durant des siècles nous avons appris, en Europe, où est la ligne d’inondation dans un endroit donné et quel est le niveau normal d’eau dans la rivière locale. Nous avons construit des systèmes de drainage qui était presque parfaits 30 ans auparavant mais qui sont débordés de plus en plus souvent. Point de vue technologie, nos infrastructures urbaines forment la solution aux problèmes qui s’évanouissent progressivement. Je veux dire qu’il n’y a pas vraiment d’alternative technologique au concept général de la ville-éponge. Les villes européennes sont ce qu’elles sont, dans une large mesure, parce qu’à travers des siècles les communautés locales avaient appris à utiliser les ressources hydrologiques crées par le climat typiquement tempéré. Le climat change et les conditions hydrologiques changent aussi. Les communautés urbaines d’Europe doivent inventer et mettre en place des solutions infrastructurelles nouvelles ou bien elles vont dépérir. J’exagère ? Allez-donc visiter l’Italie. Vous voyez le Nord opulent et le Sud pauvre. Croiriez-vous qu’il y a 2200 ans c’était exactement l’inverse ? Dans les temps de l’Ancienne Rome, république ou empire, peu importe, le Sud était le quartier chic et le Nord c’étaient les terres quasi-barbares. Les conditions externes avaient changé et certaines communautés locales avaient dégénéré.       

Je pense donc que la direction générale que je veux suivre dans le développement de mon concept d’Étangs Énergétiques est la seule direction viable à long-terme. La question est comment le faire exactement. Voilà donc que je viens à la dernière question de la liste d’identification, quelques paragraphes plus tôt : Quelle est la stratégie essentielle du projet ?  Je pense que cette stratégie doit être institutionnelle d’abord et technologique ensuite. Elle doit avant tout mobiliser plusieurs acteurs sociaux autour des projets infrastructurels. Tel que je l’envisage, le projet d’Étangs Énergétiques implique surtout et d’abord des communautés urbaines locales dans les villes européennes qui se trouvent dans des plaines fluviales le long des rivières. Suivant la structure urbaine exacte en place, on peut parler des communautés urbaines strictement dites ou bien des communautés métropolitaines, mais la logique de base reste la même : ces villes font face à un aspect spécifique des changements climatiques, donc à un rythme de précipitations qui évolue vers des averses de plus en plus violentes entrecoupées par des périodes de sécheresse. Les plaines qui longent les rivières européennes se transforment déjà en quelque chose de typiquement fluvial, un peu comme la vallée du Nile en Égypte : l’irrigation naturelle des couches superficielles du sol dépend de plus en plus de ces averses violentes. Cependant, les infrastructures de provision d’eau dans ces communautés urbaines sont, dans leur grande majorité, adaptés aux conditions environnementales du passé, avec des précipitations bien prévisibles, survenant en des cycles longs, avec des chutes de neige substantielles en hiver et des dégels progressifs dans les dernières semaines d’hiver et les premières semaines du printemps.

Les résultats espérés du projet sont les suivants : a) plus d’eau retenue sur place après averses, y compris plus d’eau potable, donc moindre risque de sécheresse et moins de dégâts causés par la sécheresse  b) moindre risque d’inondation, moindre coût de prévention ponctuelle contre l’inondation ainsi qu’un moindre coût des dégâts causés par les inondations c) contrôle des retombées environnementales indirectes de la transformation du terrain en une plaine fluviale de fait d) électricité produite sur place dans les turbines hydrauliques qui utilisent l’eau de pluie.

Lorsque je me repose la question « Qui contrôle ces résultats et qui peut le plus vraisemblablement ramasser la crème des résultats positifs ? », la réponse est complexe mais elle a une logique de base : ça dépend de la loi en vigueur. Dans le contexte légal européen que je le connais les résultats énumérés ci-dessus sont distribués parmi plusieurs acteurs. De manière générale, le contrôle des ressources fondamentales, comme les rivières et l’infrastructure qui les accompagne ou bien le système de provision d’électricité, sont sous le contrôle essentiel des gouvernements nationaux, qui à leur tour peuvent déléguer ce contrôle aux tierces personnes. Ces tierces personnes sont surtout les communautés urbaines et les grandes sociétés infrastructurelles. En fait, dans le contexte légal européen, les habitants des villes n’ont pratiquement pas de contrôle direct et propriétaire sur les ressources et infrastructures fondamentales dont dépend leur qualité de vie. Ils n’ont donc pas de contrôle direct sur les bénéfices possibles du projet. Ils peuvent avoir des retombées à travers les prix de l’immobilier, où ils ont des droits propriétaires, mais en général, point de vue contrôle des résultats, je vois déjà un problème à résoudre. Le problème c’est que quoi qu’on essaie de transformer dans l’infrastructure urbaine des villes européennes, il est dur de cerner qui est le propriétaire du changement, vu la loi en vigueur.

Je veux cerner les risques que mon concept d’Étangs Énergétiques, ainsi que le concept chinois des Villes Éponges, ont pour but de prévenir ou au moins réduire : les risques liés aux inondations et sécheresses qui surviennent en des épisodes apparemment aléatoires. J’ai fait un petit tour de littérature à ce propos. Je commence par les sécheresses. Intuitivement, ça me semble être plus dangereux que l’inondation, dans la mesure où il est quand même plus facile de faire quelque chose avec de l’eau qui est là en surabondance qu’avec de l’eau qui n’est pas là du tout. Je commence avec une lettre de recherche de Naumann et al. (2015[1]) et il y a un truc qui saute aux yeux : nous ne savons pas exactement ce qui se passe. Les auteurs, qui par ailleurs sont des experts de la Commission Européenne, admettent ouvertement que les sécheresses en Europe surviennent réellement, mais elles surviennent d’une manière que nous ne comprenons que partiellement. Nous avons même des problèmes à définir ce qu’est exactement un sécheresse dans le contexte européen. Est-ce que le dessèchement du sol est suffisant pour parler de la sécheresse ? Ou bien faut-il une corrélation forte et négative dudit dessèchement avec la productivité agriculturale ? Aussi prudent qu’il doive être, le diagnostic des risques liées à la sécheresse en Europe, de la part de Neumann et al., permet de localiser des zones à risque particulièrement élevé : la France, l’Espagne, l’Italie, le Royaume Uni, la Hongrie, la Roumanie, l’Autriche et l’Allemagne.

Il semble que les risques liés aux inondations en Europe sont mappés et quantifiés beaucoup mieux que ceux liés aux épisodes de sécheresse. Selon Alfieri et al. (2015[2]), à l’heure actuelle la population affectée par les inondations en Europe est d’environ 216 000 personnes et la tendance est vers un intervalle entre 500 000 et 640 000 personnes en 2050. Côté finances, les dommages annuels causés par les inondations en Europe sont d’à peu près €5,3 milliards, contre quelque chose entre €20 milliards et €40 milliards par an à espérer en 2050. Lorsque je compare ces deux pièces de recherche – l’une sur les épisodes de sécheresse, l’autre sur les inondations – ce qui saute aux yeux est une disparité en termes d’expérience. Nous savons tout à fait précisément ce qu’une inondation peut nous faire dans un endroit donné sous des conditions hydrologiques précises. En revanche, nous savons encore peu sur ce que nous pouvons souffrir par la suite d’un épisode de sécheresse. Lorsque je lis le rapport technique par Vogt et al. (2018[3]) je constate que pour nous, les Européens, la sécheresse est encore un phénomène qui se passe ailleurs, pas chez nous. D’autant plus difficile il nous sera de s’adapter lorsque les épisodes de sécheresse deviennent plus fréquents.

Je commence donc à penser en termes de cycle d’adaptation : un cycle de changement social en réponse au changement environnemental. Je crois que le premier épisode d’inondation vraiment massive chez moi, en Pologne, c’était en 1997. En revanche, la première sécheresse qui s’est fait vraiment remarquer chez nous, à travers des puits asséchés et des centrales électriques menacées par des problèmes de refroidissement de leurs installations, du au niveau exceptionnellement bas d’eau dans les rivières, ça semble avoir été en 2015. Alors, 2015 – 1997 = 18 ans. C’est étrange. C’est presque exactement le cycle que j’avais identifié dans ma recherche sur l’efficience énergétique et ça me fait repenser l’utilisation d’intelligence artificielle dans ma recherche. Le premier truc c’est l’application cohérente du perceptron pour interpréter les résultats stochastiques de ma recherche sur l’efficience énergétique. La deuxième chose est une généralisation de la première : cela fait un bout de temps que je me demande comment connecter de façon théorique les méthodes stochastiques utilisées dans les sciences sociales avec la structure logique d’un réseau neuronal. L’exemple de parmi les plus évidents, qui me vient maintenant à l’esprit est la définition et l’utilisation d’erreur. Dans l’analyse stochastique nous calculons une erreur standard, sur la base d’erreurs observées localement en ensuite nous utilisons cette erreur standard, par exemple dans le test t de Student. Dans un réseau neuronal, nous naviguons d’erreur locale en erreur locale, pas à pas et c’est de cette façon que notre intelligence artificielle apprend. Le troisième truc c’est la connexion entre les fonctions d’un réseau neuronal d’une part et deux phénomènes de psychologie collective : l’oubli et l’innovation.

Alors, efficience énergétique. Dans le brouillon d’article auquel je me réfère, j’avais posé l’hypothèse générale que l’efficience énergétique d’économies nationales est significativement corrélée avec les variables suivantes :

  1. Le coefficient de proportion entre l’amortissement agrégé d’actifs fixes et le PIB ; c’est une mesure de l’importance économique relative du remplacement des technologies anciennes par des technologies nouvelles ;
  2. Le coefficient du nombre des demandes nationales de brevet par 1 million d’habitants ; c’est une mesure d’intensité relative de l’apparition des nouvelles inventions ;
  3. Le coefficient de l’offre d’argent comme pourcentage du PIB, soit l’inverse de la bonne vieille vélocité de l’argent ; celui-là, c’est un vieux pote à moi : je l’ai déjà étudié, en connexion avec (i) et (ii), dans un article en 2017 ; comme vous avez pu le suivre sur mon blog, je suis très attaché à l’idée de l’argent comme hormone systémique des structures sociales ;
  4. Le coefficient de consommation d’énergie par tête d’habitant ;
  5. Le pourcentage d’énergies renouvelables dans la consommation totale d’énergie ;
  6. Le pourcentage de population urbaine dans la population totale ;
  7. Le coefficient de PIB par tête d’habitant ;

Bien sûr, je peux développer toute une ligne de réflexion sur les inter-corrélations de ces variables explicatives elles-mêmes. Cependant, je veux me concentrer sur une méta-régularité intéressante que j’avais découverte. Alors, vu que ces variables ont des échelles de mesure très différentes, j’avais commencé par en tirer des logarithmes naturels et c’était sur ces logarithmes que je faisais tous les tests économétriques. Comme j’eus effectué la régression linéaire de base sur ces logarithmes, le résultat vraiment robuste me disait que l’efficience énergétique d’un pays – donc son coefficient de PIB par kilogramme d’équivalent pétrole de consommation finale d’énergie – ça dépend surtout de la corrélation négative avec la consommation d’énergie par tête d’habitant ainsi que de la corrélation positive avec le PIB par tête d’habitant. Les autres variables avaient des coefficients de régression plus bas d’un ordre de magnitude ou bien leurs signifiance « p » selon le test t de Student était plutôt dans l’aléatoire. Comme ces deux coefficients sont dénommés par tête d’habitant, la réduction du dénominateur commun me conduisait à la conclusion que le coefficient du PIB par unité de consommation d’énergie est significativement corrélé avec le coefficient de PIB par unité de consommation d’énergie. Pas vraiment intéressant.      

C’est alors que j’ai eu cette association bizarroïde d’idées : le logarithme naturel d’un nombre est l’exposante à laquelle il faut élever la constante « e » , donc e = 2,71828 pour obtenir ledit nombre. La constante e = 2,71828, à son tour, est le paramètre constant de la fonction de progression exponentielle, qui possède une capacité intrigante de refléter des changement dynamiques avec hystérèse, donc des processus de croissance où chaque épisode consécutif bâtit sa croissance locale sur la base de l’épisode précèdent.

Dans la progression exponentielle, l’exposante de la constante e = 2,71828 est un produit complexe d’un paramètre exogène « a » et du numéro ordinal « t » de la période de temps consécutive. Ça va donc comme y = ea*t . Le coefficient de temps « t » est mesuré dans un calendrier. Il dépend de l’assomption en ce qui concerne le moment originel de la progression : t = tx – t0tx est le moment temporel brut en quelque sorte et t0 est le moment originel. Tout ça c’est de l’ontologie profonde en soi-même : le temps dont nous sommes conscients est une projection d’un temps sous-jacent sur le cadre d’un calendrier conventionnel.

Moi, j’ai utilisé cette ontologie comme prétexte pour jouer un peu avec mes logarithmes naturels. Logiquement, le logarithme naturel d’un nombre « » peut s’écrire comme l’exposante de la constante « e » dans une progression exponentielle, donc ln(x) = a*t. Comme t = tx – t0 , la formulation exacte du logarithme naturel est donc ln(x) = a*(tx – t0). Logiquement, la valeur locale du coefficient exogène « a » dépend du choix conventionnel de t0. C’est alors que j’avais imaginé deux histoires alternatives : l’une qui avait commencé un siècle avant – donc en 1889, vers la fin de la deuxième révolution industrielle – et l’autre qui avait commencé en 1989, après le grand changement politique en Europe et la chute du mur de Berlin.

J’avais écrit chaque logarithme naturel dans mon ensemble des données empiriques dans deux formulations alternatives : ln(x) = a1*(tx – 1889) ou alors ln(x) = a2*(tx – 1989). Par conséquent, chaque valeur empirique « x » dans mon échantillon acquiert deux représentations alternatives : a1(x) = ln(x) / (tx – 1889) et a2(x) = ln(x) / (tx – 1989).  Les « a1 » c’est de l’histoire lente et posée. Mes observations empiriques commencent en 1990 et durent jusqu’en 2014 ; a1(x ; 1990) = ln(x)/101 alors que a1(x ; 2014) = ln(x)/125. En revanche, les « a2 » racontent une histoire à l’image d’une onde de choc qui se répand avec force décroissante depuis son point d’origine ; a2(x ; 1990) = ln(x)/1 pendant que a2(x ; 2014) = ln(x)/25.

J’ai repris la même régression linéaire – donc celle que j’avais effectué sur les logarithmes naturels ln(x) de mes données – avec les ensembles transformés « a1(x) » et « a2(x) ». Je cherchais donc à expliquer de façon stochastiques les changements observés dans « a1(efficience énergétique) » ainsi que « a2(efficience énergétique) » par régression sur les « a1(x) » et « a2(x) » des variables explicatives (i) – (vii) énumérées plus haut. La régression des « a1 » paisibles tire de l’ombre l’importance de la corrélation entre l’efficience énergétique et le pourcentage de population urbaine dans la population totale : plus de citadins dans la population totale, plus efficiente énergétiquement est l’économie du pays. Lorsque je régresse sur les « a2 » en onde de choc faiblissante, la corrélation entre l’urbanisation et l’efficience énergétique gagne en force et une autre apparaît : celle avec l’offre d’argent comme pourcentage du PIB. Plus de pognon par unité de PIB, plus de PIB par kilogramme d’équivalent pétrole consommé.

Ici, j’ai un peu le même doute qu’à chaque fois que je vois une technique stochastique nouvelle, par exemple lorsque je compare les résultats de régression linéaire selon la méthode des moindres carrés avec les mêmes données empiriques traitées avec des méthodes comme GARCH ou ARIMA. Les méthodes différentes de calcul appliquées aux mêmes données de départ donnent des résultats différents : c’est normal. Néanmoins, ces résultats différents sont-ils des manifestations de quelque chose réellement différent ? Ce qui me vient à l’esprit est le concept du cycle Schumpétérien. Dans son livre célèbre intitulé « Business Cycles », l’économiste Autrichien Joseph Aloïs Schumpeter avait formulé la thèse qui depuis s’est bien installée dans les sciences sociales : celle du cycle de changement technologique. Mes résultats de recherche indiquent que les changements d’efficience énergétique forment des corrélations les plus cohérentes avec d’autres variables prises en compte lorsque j’impose une analyse de cycle, avec un moment initial hypothétique. Comment ce cycle est lié aux comportements individuels et collectifs, donc comment puis-je l’étudier comme phénomène d’intelligence collective ? 

Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ? Vous pouvez me contacter à travers la boîte électronique de ce blog : .

[1] Gustavo Naumann et al. , 2015, Assessment of drought damages and their uncertainties in Europe, Environmental Research Letters, vol. 10, 124013, DOI

[2] Alfieri, L., Feyen, L., Dottori, F., & Bianchi, A. (2015). Ensemble flood risk assessment in Europe under high end climate scenarios. Global Environmental Change, 35, 199-212.

[3] Vogt, J.V., Naumann, G., Masante, D., Spinoni, J., Cammalleri, C., Erian, W., Pischke, F., Pulwarty, R., Barbosa, P., Drought Risk Assessment. A conceptual Framework. EUR 29464 EN, Publications Office of the European Union, Luxembourg, 2018. ISBN 978-92-79-97469-4, doi:10.2760/057223, JRC113937

Sponge cities

My editorial on You Tube

I am developing on the same topic I have already highlighted in « Another idea – urban wetlands », i.e. on urban wetlands. By the way, I have found a similar, and interesting concept in the existing literature: the sponge city. It is being particularly promoted by Chinese authors. I am going for a short review of the literature on this specific topic, and I am starting with correcting a mistake I made in my last update in French, « La ville – éponge » when discussing the article by Shao et al. (2018[1]). I got confused in the conversion of square meters into square kilometres. I forgot that 1 km2 = 106 m2, not 103. Thus, correcting myself now, I rerun the corresponding calculations. The Chinese city of Xiamen, population 3 500 000, covers an area of 1 865 km2, i.e. 1 865 000 000 m2. In that, 118 km2 = 118 000 000 m2 are infrastructures of sponge city, or purposefully arranged urban wetlands. Annual precipitations in Xiamen, according to, are 1131 millimetres per year, thus 1131 m3 of water per 1 m2. Hence, the entire city of Xiamen receives 1 865 000 000 m2 * 1 131 m3/m2 =  2 109 315 000 000 m3 of precipitation a year, and the sole area of urban wetlands, those 118 square kilometres, receives 118 000 000 m2 * 1 131 m3/m2 =  133 458 000 000 m3. The infrastructures of sponge city in Xiamen have a target capacity of 2% regarding the retention of rain water, which gives  2 669 160 000 m3.

Jiang et al. (2018[2]) present a large scale strategy for the development of sponge cities in China. The first takeaway I notice is the value of investment in sponge city infrastructures across a total of 30 cities in China. Those 30 cities are supposed to absorb $275,6 billions in the corresponding infrastructural investment, thus an average of $9,19 billion per city. The first on the list is Qian’an, population 300 000, are 3 522 km2, total investment planned I = $5,1 billion. That gives $17 000 per resident, and $1 448 041 per 1 km2 of urban area. The city of Xiamen, whose case is discussed by the previously cited Shao et al. (2018[3]), has already got $3,3 billion in investment, with a target at I = $14,14 billion, thus at $4800 per resident, and $7 721 180 per square kilometre. Generally, the intensity of investment, counted per capita or per unit of surface, is really disparate. This is, by the way, commented by the authors: they stress the fact that sponge cities are so novel a concept that local experimentation is norm, not exception.

Wu et al. (2019[4]) present another case study, from among the cities listed in Jiang et al. (2018), namely the city of Wuhan. Wuhan is probably the biggest project of sponge city in terms of capital invested: $20,04 billion, distributed across 293 detailed initiatives. Started after a catastrophic flood in 2016, the project has also proven its value in protecting the city from floods, and, apparently, it is working. As far as I could understand, the case of Wuhan was the first domino block in the chain, the one that triggered the whole, nation-wide programme of sponge cities.

Shao et al. (2016[5]) present an IT approach to organizing sponge-cities, focusing on the issue of data integration. The corresponding empirical field study had been apparently conducted in Fenghuang County, province Hunan. The main engineering challenge consists in integrating geographical data from geographic information systems (GIS) with data pertinent to urban infrastructures, mostly CAD-based, thus graphical. On the top of that, spatial data needs to be integrated with attribute data, i.e. with the characteristics of both infrastructural objects, and their natural counterparts. All that integrated data is supposed to serve efficient application of the so-called Low Impact Development (LID) technology. With the Fenghuang County, we can see the case of a relatively small area: 30,89 km2, 350 195 inhabitants, with a density of population of 200 people per 1 km2. The integrated data system was based on dividing that area into 417 sub-catchments, thus some 74 077 m2 per catchment.         

Good, so this is like a cursory review of literature on the Chinese concept of sponge city. Now, I am trying to combine it with another concept, which I first read about in a history book, namely Civilisation and Capitalism by Fernand Braudel, volume 1: The Structures of Everyday Life[6]: the technology of lifting and pumping water from a river with the help of kinetic energy of waterwheels propelled by the same river. Apparently, back in the day, in cities like Paris, that technology was commonly used to pump river water onto the upper storeys of buildings next to the river, and even to the further-standing buildings. Today, we are used to water supply powered by big pumps located in strategic nodes of large networks, and we are used to seeing waterwheels as hydroelectric turbines. Still, that old concept of using directly the kinetic energy of water seems to pop up again, here and there. Basically, it has been preserved in a slightly different form. Do you know that image in movies, with that windmill in the middle of a desert? What is the point of putting a windmill in the middle of a desert? To pump water from a well. Now, let’s make a little jump from wind power to water power. If we can use the force of wind to pump water from underground, we can use the force of water in a river to pump water from that river.  

In scientific literature, I found just one article making reference to it, namely Yannopoulos et al. (2015[7]). Still, in the less formal areas, I found some more stuff. I found that U.S. patent, from 1951, for a water-wheel-driven brush. I found more modern a technology of the spiral pump, created by a company called PreScouter. Something similar is being proposed by the Dutch company Aqysta. Here are some graphics to give you an idea:

Now, I put together the infrastructure of a sponge city, and the technology of pumping water uphill using the energy of the water. I have provisionally named the thing « Energy Ponds ». Water wheels power water pumps, which convey water to elevated tanks, like water towers. From water towers, water falls back down to the ground level, passes through small hydroelectric turbines on its way down, and lands in the infrastructures of a sponge city, where it is being stored. Here below, I am trying to make a coherent picture of it. The general concept can be extended, which I present graphically further below: infrastructure of the sponge city collects excess water from rainfall or floods, and partly conducts it to the local river(s). What limits the river from overflowing or limits the degree of overflowing is precisely the basic concept of Energy Ponds, i.e. those water-powered water pumps that pump water into elevated tanks. The more water flows in the river – case of flood or immediate threat thereof – the more power in those pumps, the more flow through the elevated tanks, and the more flow through hydroelectric turbines, hence the more electricity. As long as the whole infrastructure physically holds the environmental pressure of heavy rainfall and flood waves, it can work and serve.

My next step is to outline the business and financial framework of the « Energy Ponds » concept, taking the data provided by Jiang et al. (2018) about 29 sponge city projects in China, squeezing as much information as I can from it, and adding the component of hydroelectricity. I transcribed their data into an Excel file, and added some calculations of my own, together with data about demographics and annual rainfall. Here comes the Excel file with data as of July 5th 2019. A pattern emerges. All the 29 local clusters of projects display quite an even coefficient of capital invested per 1 km2 of construction area in those projects: it is $320 402 571,51 on average, with quite a low standard deviation, namely $101 484 206,43. Interestingly, that coefficient is not significantly correlated neither with the local amount of rainfall per 1 m2, nor with the density of population. It looks like quite an autonomous variable, and yet as a recurrent proportion.      

Another interesting pattern is to find in the percentage of the total surface, in each of the cities studied, devoted to being filled with the sponge-type infrastructure. The average value of that percentage is 0,61% and is accompanied by quite big a standard deviation: 0,63%. It gives an overall variability of 1,046. Still, that percentage is correlated with two other variables: annual rainfall, in millimetres per square meter, as well as with the density of population, i.e. average number of people per square kilometre. Measured with the Pearson coefficient of correlation, the former yields r = 0,45, and the latter is r = 0,43: not very much, yet respectable, as correlations come.

From underneath those coefficients of correlation, common sense pokes its head. The more rainfall per unit of surface, the more water there is to retain, and thus the more can we gain by installing the sponge-type infrastructure. The more people per unit of surface, the more people can directly benefit from installing that infrastructure, per 1 km2. This one stands to reason, too.

There is an interesting lack of correlations in that lot of data taken from Jiang et al. (2018). The number of local projects, i.e. projects per one city, is virtually not correlated with anything else, and, intriguingly, is negatively correlated, at Pearson r = – 0,44, with the size of local populations. The more people in the city, the less local projects of sponge city are there.    

By the way, I have some concurrent information on the topic. According to a press release by Voith, this company has recently acquired a contract with the city of Xiamen, one of the sponge-cities, for the supply of large hydroelectric turbines in the technology of pumped storage, i.e. almost exactly the thing I have in mind.

Now, the Chines programme of sponge cities is a starting point for me to reverse engineer my own concept of « Energy Ponds ». I assume that four economic aggregates pay off for the corresponding investment: a) the Net Present Value of proceedings from producing electricity in water turbines b) the Net Present Value of savings on losses connected to floods c) the opportunity cost of tap water available from the retained precipitations, and d) incremental change in the market value of the real estate involved.

There is a city, with N inhabitants, who consume R m3 of water per year, R/N per person per year, and they consume E kWh of energy per year, E/N per person per year. R divided by 8760 hours in a year (R/8760) is the approximate amount of water the local population needs to have in current constant supply. Same for energy: E/8760 is a good approximation of power, in kW, that the local population needs to have standing and offered for immediate use.

The city collects F millimetres of precipitation a year. Note that F mm = F m3/m2. With a density of population D people per 1 km2, the average square kilometre has what I call the sponge function: D*(R/N) = f(F*106). Each square kilometre collects F*106 cubic meters of precipitation a year, and this amount remains is a recurrent proportion to the aggregate amount of water that D people living on that square kilometre consume per year.

The population of N residents spend an aggregate PE*E on energy, and an aggregate PR*R on water, where PE and PR are the respective prices of energy and water. The supply of water and energy happens at levelized costs per unit. The reference math here is the standard calculation of LCOE, or Levelized Cost of Energy in an interval of time t, measured as LCOE(t) = [IE(t) + ME(t) + UE(t)] / E, where IE is the amount of capital invested in the fixed assets of the corresponding power installations, ME is their necessary cost of current maintenance, and UE is the cost of fuel used to generate energy. Per analogy, the levelized cost of water can be calculated as LCOR(t) = [IR(t) + MR(t) + UR(t)] / R, with the same logic: investment in fixed assets plus cost of current maintenance plus cost of water strictly speaking, all that divided by the quantity of water consumed. Mind you, in the case of water, the UR(t) part could be easily zero, and yet it does not have to be.  Imagine a general municipal provider of water, who buys rainwater collected in private, local installations of the sponge type, at UR(t) per cubic metre, that sort of thing.

The supply of water and energy generates gross margins: E(t)*(PE(t) – LCOE(t)) and R(t)*(PR(t) – LCOR(t)). These margins are possible to rephrase as, respectively, PE(t)*E(t)IE(t) – ME(t) – UE(t), and R(t)*PR(t) – IR(t) – MR(t) – UR(t). Gross margins are gross cash flows, which finance organisations (jobs) attached to the supply of, respectively, water and energy, and generate some net surplus. Here comes a little difficulty with appraising the net surplus from the supply of water and energy. Long story short: the levelized values of the « LCO-whatever follows » type explicitly incorporate the yield on capital investment. Each unit of output is supposed to yield a return on investment I. Still, this is not how classical accounting defines a cost. The amounts assigned to costs, both variable and fixed, correspond to the strictly speaking current expenditures, i.e. to payments for the current services of people and things, without any residual value sedimenting over time. It is only after I account for those strictly current outlays that I can calculate the current margin, and a fraction of that margin can be considered as direct yield on my investment. In standard, basic accounting, the return on investment is the net income divided by the capital invested. The net income is calculated as π = Q*P – Q*VC – FC – r*I – T, where Q and P are quantity and price, VC is the variable cost per unit of output Q, FC stands for the fixed costs, r is the price of capital (interest rate) on the capital I invested in the given business, and T represents taxes. In the same standard accounting, Thus calculated net income π is then put into the formula of internal rate of return on investment: IRR = π / I.     

When I calculate my margin of profit on the sales of energy or water, I have those two angles of approach. Angle #1 consists in using the levelized cost, and then the margin generated over that cost, i.e. P – LC (price minus levelized cost) can be accounted for other purposes than the return on investment. Angle #2 comes from traditional accounting: I calculate my margin without reference to the capital invested, and only then I use some residual part of that margin as return on investment. I guess that levelized costs work well in the accounting of infrastructural systems with nicely predictable output. When the quantity demanded, and offered, in the market of energy or water is like really recurrent and easy to predict, thus in well-established infrastructures with stable populations around, the LCO method yields accurate estimations of costs and margins. On the other hand, when the infrastructures in question are developing quickly and/or when their host populations change substantially, classical accounting seems more appropriate, with its sharp distinction between current costs and capital outlays.

Anyway, I start modelling the first component of the possible payoff on investment in the infrastructures of « Energy Ponds », i.e.  the Net Present Value of proceedings from producing electricity in water turbines. As I generally like staying close to real life (well, most of the times), I will be wrapping my thinking around my hometown, where I still live, i.e. Krakow, Poland, area of the city: 326,8 km2, area of the metropolitan area: 1023,21 km2. As for annual precipitations, data from[1] tells me that it is a bit more than the general Polish average of 600 mm a year. Apparently, Krakow receives an annual rainfall of 678 mm, which, when translated into litres received by the whole area, makes a total rainfall on the city of  221 570 400 000 litres, and, when enlarged to the whole metropolitan area, makes

693 736 380 000 litres.

In the generation of electricity from hydro turbines, what counts is the flow, measured in litres per second. The above-calculated total rainfall is now to be divided by 365 days, then by 24 hours, and then by 3600 seconds in an hour. Long story short, you divide the annual rainfall in litres by the constant of 31 536 000 seconds in one year. Mind you, on odd years, it will be 31 622 400 seconds. This step leads me to an estimate total flow of 7 026 litres per second in the city area, and 21 998 litres per second in the metropolitan area. Question: what amount of electric power can I get with that flow? I am using a formula I found at Renewables[2] : flow per second, in kgs per second multiplied by the gravitational constant a = 9,81, multiplied by the average efficiency of a hydro turbine equal to 75,1%, further multiplied by the net head – or net difference in height – of the water flow. All that gives me electric power in watts. All in all, when you want to calculate the electric power dormant in your local rainfall, take the total amount of said rainfall, in litres falling on the entire place where you can possibly collect that rainwater from, and multiply it by 0,076346*Head of the waterflow. You will get power in kilowatts, with that implied efficiency of 75,1% in your technology.

For the sake of simplicity, I assume that, in those installations of elevated water tanks, the average elevation, thus the head of the subsequent water flow through hydro turbines, will be H = 10 m. That leads me to P = 518 kW available from the annual rainfall on the city of Krakow, when elevated to H = 10 m, and, accordingly, P = 1 621 kW for the rainfall received over the entire metropolitan area.

In the next step, I want to calculate the market value of that electric power, in terms of revenues from its possible sales. I take the power, and I multiply it by 8760 in a year (8784 hours in an odd year). I get the amount of electricity for sale equal to E = 4 534 383 kWh from the rainfall received over the city of Krakow strictly spoken, and E = 14 197 142 kWh if we hypothetically collect rainwater from the entire metro area.

Now, the pricing. According to data available at[3], the average price of electricity in Poland is PE = $0,18 per kWh. Still, when I get, more humbly, to my own electricity bill, and I crudely divide the amount billed in Polish zlotys by the amount used in kWh, I get to something like PE = $0,21 per kWh. The discrepancy might be coming from the complexity of that price: it is the actual price per kWh used plus all sorts of constant stuff per kW of power made available. With those prices, the market value of the corresponding revenues from selling electricity from rainfall used smartly would be like $816 189  ≤ Q*PE  $952 220 a year from the city area, and $2 555 485 ≤ Q*PE  $2 981 400 a year from the metropolitan area.

I transform those revenues, even before accounting for any current costs, into a stream, spread over 8 years of average lifecycle in an average investment project. Those 8 years are what is usually expected as the time of full return on investment in those more long-term, infrastructure-like projects. With a technological lifecycle around 20 years, those projects are supposed to pay for themselves over the first 8 years, the following 12 years bringing a net overhead to investors. Depending on the pricing of electricity, and with a discount rate of r = 5% a year, it gives something like $5 275 203 ≤ NPV(Q*PE ; 8 years) ≤ $6 154 403 for the city area, and $16 516 646 ≤ NPV(Q*PE ; 8 years) ≤  $19 269 421 for the metropolitan area.

When I compare that stream of revenue to what is being actually done in the Chinese sponge cities, discussed a few paragraphs earlier, one thing jumps to the eye: even with the most optimistic assumption of capturing 100% of rainwater, so as to make it flow through local hydroelectric turbines, there is no way that selling electricity from those turbines pays off for the entire investment. This is a difference in the orders of magnitude, when we compare investment to revenues from electricity.

I am consistently delivering good, almost new science to my readers, and love doing it, and I am working on crowdfunding this activity of mine. You can communicate with me directly, via the mailbox of this blog: As we talk business plans, I remind you that you can download, from the library of my blog, the business plan I prepared for my semi-scientific project Befund  (and you can access the French version as well). You can also get a free e-copy of my book ‘Capitalism and Political Power’ You can support my research by donating directly, any amount you consider appropriate, to my PayPal account. You can also consider going to my Patreon page and become my patron. If you decide so, I will be grateful for suggesting me two things that Patreon suggests me to suggest you. Firstly, what kind of reward would you expect in exchange of supporting me? Secondly, what kind of phases would you like to see in the development of my research, and of the corresponding educational tools?

[1] last access July 7th 2019

[2] last access July 7th, 2019

[3] last access July 8th 2019

[1] Shao, W., Liu, J., Yang, Z., Yang, Z., Yu, Y., & Li, W. (2018). Carbon Reduction Effects of Sponge City Construction: A Case Study of the City of Xiamen. Energy Procedia, 152, 1145-1151.

[2] Jiang, Y., Zevenbergen, C., & Ma, Y. (2018). Urban pluvial flooding and stormwater management: A contemporary review of China’s challenges and “sponge cities” strategy. Environmental science & policy, 80, 132-143.

[3] Shao, W., Liu, J., Yang, Z., Yang, Z., Yu, Y., & Li, W. (2018). Carbon Reduction Effects of Sponge City Construction: A Case Study of the City of Xiamen. Energy Procedia, 152, 1145-1151.

[4] Wu, H. L., Cheng, W. C., Shen, S. L., Lin, M. Y., & Arulrajah, A. (2019). Variation of hydro-environment during past four decades with underground sponge city planning to control flash floods in Wuhan, China: An overview. Underground Space, article in press

[5] Shao, W., Zhang, H., Liu, J., Yang, G., Chen, X., Yang, Z., & Huang, H. (2016). Data integration and its application in the sponge city construction of China. Procedia Engineering, 154, 779-786.

[6] Braudel, F., & Reynolds, S. (1979). Civilization and capitalism 15th-18th Century, vol. 1, The structures of everyday life. Civilization, 10(25), 50.

[7] Yannopoulos, S., Lyberatos, G., Theodossiou, N., Li, W., Valipour, M., Tamburrino, A., & Angelakis, A. (2015). Evolution of water lifting devices (pumps) over the centuries worldwide. Water, 7(9), 5031-5060.

La ville – éponge

Mon éditorial sur You Tube

Je développe sur le concept que je viens d’esquisser dans ma dernière mise à jour en anglais : « Another idea – urban wetlands ». C’est un concept d’entreprise et concept environnementaliste en même temps : un réseau d’étangs et des cours d’eau qui serviraient à la fois comme réserve d’eau et l’emplacement pour un réseau des petites turbines hydrauliques.  Oui, je sais, je n’en ai pas encore fini avec EneFin, le concept financier. Je compte de l’appliquer ici de façon créative. Point de vue mécanique des liquides, l’esquisse de l’idée est la suivante. On a besoin d’une rivière qui sera la source primaire d’eau pour le système. Dans les environs immédiats de cette rivière nous construisons un réseau des cours d’eau et d’étangs. Les étangs jouent le rôle des réservoirs naturels d’eau. Ils collectent un certain surplus d’eau de pluie conduite par la rivière. De cette façon, l’eau de pluie est mise en réserve.

Les cours d’eau connectent la rivière avec les étangs ainsi que les étangs entre eux. Les cours d’eau ont une double fonction. D’une part, ils sont l’emplacement à proprement dit des petites turbines hydrauliques qui produisent l’électricité. D’autre part, ils assurent de la circulation d’eau dans le système afin de minimiser la putréfaction de débris organiques dans les étangs et par la même façon de minimiser l’émission de méthane. Le tout est complété par les cultures d’arbres et arbustes. Ces grosses plantes vertes ont une double fonction aussi. D’une part, leurs racines servent de stabilisateurs pour le sol du système, qui en raison de l’abondance d’eau peut avoir tendance à bouger. D’autre part, ces plantes vont absorber du carbone de l’atmosphère et contrebalancent ainsi les émissions des gaz de putréfaction des étangs.

La façon dont le système entier se présente dépend de la dénivellation relative du terrain. Le design de base c’est dans le terrain plat (ou presque) où la circulation d’eau dans le réseau est forcée par la pression provenant de la rivière. La présence des monts et vallées change le jeu : à part la pression de flux riverain, on peut utiliser les siphons romains pour créer un courant additionnel.

Je sais que dès un système comme celui-là est proposé, l’objection courante est celle à propos des moustiques. Des étangs à proximité d’habitations humaines veulent dire des tonnes de moustiques. L’une des observations pratiques sur lesquelles je me base est que ça arrive de toute façon. Je peux observer ce phénomène chez moi, en Pologne du sud. Année après année, certains endroits progressivement s’imbibent d’eau. Des petits creux de terrains se transforment en des marais microscopiques. Des complexes résidentiels entiers dans les banlieues des grandes villes connaissent des vagues de travaux de rénovation pour renforcer l’isolation hydrophobe des fondements.  Oui, ça arrive déjà et le problème c’est que ça pose que des problèmes, sans retombés positifs niveau accès à l’eau potable. Autant civiliser le phénomène. Ci-dessous, je présente une carte d’Europe Centrale et Méridionale, où les emplacements des vallées fluviales sont marqués.

En plus, on peut de débarrasser des moustiques – ou les rendre, au moins, presque inoffensifs – avec l’aide de la végétation adéquate. J’ai fait un peu de recherche et voilà la liste des plantes qui repoussent les moustiques et qui donc, si plantées abondamment à travers ces structures faites d’étangs et des cours d’eau, peuvent largement résoudre ce problème-là :  la citronnelle (Cymbopogon nardus), la mélisse officinale (Melissa officinalis), la cataire (Nepeta cataria)

le souci officinal (Calendula officinalis), la rose d’Inde (Tagetes erecta), l’œillet d’Inde (Tagetes patula), la Tagète lucida (Tagetes lucida), la Tagète citron (Tagetes tenuifolia), Baileya multiradiata (pas de nom français distinctif, pour autant que je sache), le populage des marais (Caltha palustres), le basilic (Ocimum basilicum), la lavande (famille Lamiacae), la menthe poivrée (Mentha x piperita), l’ail (Allium sativum), la menthe pouliot (Mentha pulegium), le romarin (Rosmarinus officinalis) et finalement les géraniums (famille Geraniums).

Source: dernier accès 20 Juin 2019

Ah, oui, j’ai oublié : dans un premier temps, je veux étudier la possibilité d’installer tout ce bazar dans l’environnement urbain, quelque chose comme des marais civilisés et citadins, Ça fait plus d’un an que j’ai abordé le sujet des villes intelligentes et ben voilà un concept qui va à merveille. Je veux développer cette idée comme projet de promotion immobilière. Je me suis dit que si je réussis à y donner une forme purement entrepreneuriale, ce sera le test le plus exigeant en termes de faisabilité. Je veux dire que si c’est profitable – ou plutôt s’il y a des fortes chances que ce soit profitable – le concept peut se développer sans aide publique. Cette dernière peut apporter du changement positif additionnel, bien sûr, mais le truc peut se développer par la force des marchés locaux de l’immobilier. Voilà donc que je considère la valeur économique d’un projet comme la valeur actuelle nette du flux de trésorerie. Sur un horizon de « n » périodes, deux choses adviennent : le projet génère un flux de trésorerie, d’une part, et il note un changement de valeur du marché d’autre part. La formule que je présente ci-dessous est une modification de celle présentée par Hatata et al. 2019[1]. À part une notation légèrement modifiée, j’élimine la catégorie séparée des coûts de maintenance des installations et je les inclue dans la catégorie générale des coûts opérationnels. En revanche, si les dépenses sur la maintenance courante des installations sont une compensation de l’amortissement physique et donc s’ils constituent des additions à la valeur brute des biens immobiliers, on les compte comme investissement.  

Je commence l’application empirique de la formule par étudier le marché des terrains de construction en Europe, plus spécialement dans les zones riveraines. Je retourne à la comparaison entre ma ville natale, Krakow, Pologne, où je vis, en Lyon, France, où j’avais passé quelques années autant troublées qu’intéressantes de mon adolescence. Krakow d’abord : 1 mètre carré de terrain de construction, dans la ville-même, coûte entre €115 et €280. À Lyon, la fourchette des prix est plus large et plus élevée : entre €354 et €1200 par m2.

Question : quelle superficie pourrait bien avoir un terrain urbain transformé en ce marécage artificiel ? Question dure à répondre. J’essaie de l’attaquer par le bout aquatique. Ce système a pour une des fonctions de stocker, dans le réseau d’étangs, suffisamment d’eau de pluie pour satisfaire la demande de la population locale et de laisser encore un surplus résiduel. J’ai fait un peu de recherche sur la quantité d’eau consommée dans les ménages. En fait, il y a peu de données claires et sans équivoque sur le sujet. La source qui a l’air d’être la plus sérieuse est AQUASTAT – Système d’information mondial de la FAO sur l’eau et l’agriculture.

Une déconstruction prudente des données publiées par la Banque Mondiale indique que la consommation domestique d’eau en France est d’à peu près 81 ÷ 82 m3 par personne par an, soit entre 81 000 et 82 000 litres. En Danemark, c’est à peu près 59 ÷ 60 m3 par personne par an (59 000 ÷ 60 000 litres) et je n’ai aucune idée où cette différence peut bien venir. J’ai déjà éliminé l’usage non-domestique, au moins selon la structure logique des données présentées par la banque mondiale. En revanche, lorsque j’ai étudié quelques publications polonaises sur le sujet, il paraît que la consommation domestique d’eau est plutôt répétitive à travers l’Europe et elle oscille entre 36 et 40 m3 par personne par an.

Il y a certainement une source de ces disparités : la distinction entre, d’une part, la consommation ménagère strictement comptée, avec des compteurs d’eau associés aux personnes précises et d’autre part, la consommation personnelle totale, y compris l’usage d’eau de puits et d’eau en bouteilles et bidons. Du point de vue hydrologique, chaque endroit sur Terre reçoit une certaine quantité d’eau Ep de précipitations atmosphériques – donc de pluie ou de neige – ainsi qu’à travers des rivières qui apportent l’eau des territoires adjacents. Le même endroit déverse une quantité définie Ed d’eau dans les mers et océans adjacents, à travers les fleuves. Le territoire entier perd aussi une quantité définie Ev d’eau par évaporation. La différence Er = Ep – Ev – Ed est la quantité absorbée par le territoire.

Lorsque nous, les humains, utilisons l’eau dans notre vie quotidienne, la plupart de cette consommation atterrit dans des égouts de toute sorte, qui la conduisent vers et dans le réseau fluvial. Oui, lorsque nous arrosons nos jardins, une partie de cette eau s’évapore, mais la grande majorité de notre consommation d’eau entre dans la composante Ed ci-dessus. Le flux Ed peut être décomposé en deux sous-flux : le flux strictement naturel Ed-n d’eau qui coule tout simplement, ça et là, et le flux Ed-h qui passe à travers l’utilisation humaine. Pour être tout à fait précis, on peut adopter la même distinction pour l’eau d’évaporation, donc Ev = Ev-n + Ev-h.

Le sentier conceptuel préliminairement défriché, je peux passer en revue un peu de littérature. Katsifarakis et al. (2015[1]) décrivent l’application d’une structure urbaine appelée « jardin pluvial » (« rain garden » en anglais). Grosso modo, un jardin pluvial est une agglomération des structures superficielles qui favorisent la collection d’eau de pluie – égouts, puits, arbustes, près humides, étangs ouverts – avec des structures souterraines qui favorisent la rétention de la même eau dans des couches successives du sol. Ici, ‘y a un truc intéressant que l’article de Katsifarakis et al. suggère comme attribut possible d’un jardin pluvial : le drainage inversé. Normalement, les tuyaux de drainage servent à éconduire l’eau de pluie en dehors du terrain donné. Cependant, il est possible d’enfoncer les tuyaux de drainage verticalement, vers et dans les couches profondes du sol, pour favoriser la rétention d’eau de pluie dans des poches souterraines profondes, un peu comme des poches artésiennes. J’ai essayé de présenter l’idée visuellement ci-dessous. Normalement, un étang, ça se creuse jusqu’à ce qu’on arrive à une couche géologique imperméable ou peu perméable. C’est comme ça que l’eau reste dedans. Si en-dessous de cette couche imperméable il y a une nappe perméable et poreuse, capable de retenir de l’eau, une nappe aquifère peut se former dans les roches sous l’étang. L’étang de surface est alors une structure de captage et la rétention proprement dite survient dans l’aquifère sous-jacent. Remarquez, faut faire gaffe avec le drainage renversé et les aquifères. Ça marche bien dans des endroits vraiment plats et naturellement fluviaux, comme dans les plaines riveraines d’une rivière. C’est plat et – grâce au boulot qu’avaient fait les glaciers, dans le passé – ça contient des larges poches sableuses insérées entre des nappes rocheuses imperméables. En revanche, si le terrain est en pente ou bien s’il se termine par une falaise, un aquifère peut provoquer des glissements de terrain gigantesques.  

Alors, voyons voir comment des trucs comme drainage inversé peuvent marcher pour stocker l’eau de pluie ou bien celle d’inondation. Je m’en tiens à mes deux exemples : Krakow en Pologne et Lyon en France. En France, les précipitations annuelles moyennes[1] sont de 867 milimètres par an par mètre carré ; en Pologne, c’est 600 mm. Un milimètre de précipitation par mètre carré veut dire 1 litre, donc 0,001 mètre cube. En France, le mètre carré moyen de territoire collecte donc 0,867 m3 de précipitations annuelles, avec une consommation moyenne ménagère d’environ 81,69 m3 par personne par an. Pour que la personne moyenne aie sa consommation d’eau contrebalancée par le stockage d’eau de pluie, il faut donc 81,69 m3 / 0,867 [m3/m2] = 94,23 m2 de surface de collection d’eau. Ajoutons à ceci un surplus de 20%, à titre de stockage résiduel par-dessus la consommation courante : ceci fait 94,23 m2 * 1,2 = 113,07 m2. En d’autres mots, en France, l’eau de pluie (ou neige) collectée de la surface d’environ 113 ÷ 114 mètres carrés de terrain ouvert exposé directement aux précipitations peut pourvoir, si captée proprement, à la consommation moyenne d’eau d’une personne plus un résidu mis en réserve.

En ce qui concerne la Pologne, même la source la plus exhaustive, donc AQUASTAT de FAO, ne donne pas d’estimation de consommation d’eau par personne. Je vais donc faire un petit tour de maths, prendre les estimations pour la France et les comparer avec un pays voisin à tous les deux, donc l’Allemagne : consommation totale d’eau par personne par an égale à 308,5 mètres cube, dont la consommation ménagère devrait prendre à peu de choses près 20%, soit 62 m3. J’assume donc qu’un Polonais moyen consomme ces 62 m3 d’eau par an, j’y ajoute 20% pour stockage résiduel, ce qui me fait 74,4 m3. Je divise ça par les 0,6 m3 de précipitations annuelles par mètre carré. En fin de compte j’obtiens 124 m2 de surface arrangée en jardin pluvial. Encore une fois, je résume graphiquement.

Je reviens à la revue de littérature. Shao et al. (2018[1]) présentent un concept similaire au mien : la ville – éponge ou « sponge city » en anglais. La ville – éponge absorbe l’eau et le carbone. E plus, grâce à l’absorption de l’eau pluviale, la ville – éponge a besoin de moins d’énergie pour pomper l’eau dans l’infrastructure urbaine et de cette façon une telle structure dégage moins de CO2. La ville – éponge combine la verdure et les jardins pluviaux avec des zones marécageuses, comme le concept que j’essaie de développer. Selon les estimations présentées par Shao et al., la capacité d’absorption de carbone dans des villes – éponges déjà mises en place en Chine est très variable : de 4,49 grammes de carbone par an par mètre carré dans les marécages des plaines du Nord – Est de Chine jusqu’à 56,67 grammes par an par mètre carré dans les marécages des lacs des plaines orientales. Shao et al. présentent une analyse détaillée de la ville de Xiamen. Avec 3,5 millions d’habitants, une surface totale de 1 865 km2 et son infrastructure de ville – éponge couvrant à peu près 118 kilomètres carrés, la ville de Xiamen compte retenir 17,18 millions des mètres cubes d’eau de pluie par an, à travers la technologie des structures – éponge.

Pour donner une image complète, il faut dire que Xiamen note des précipitations tout à fait significatives : 1131 millimètres par an, selon le service[2]. Bon, calmons le jeu, parce qu’il y a quelque chose qui cloche dans ces calculs de par Shao et al. J’assume que l’infrastructure de la ville – éponge collecte l’eau de pluie de toute la ville, donc que les 118 km2 de cette infrastructure absorbent l’eau qui tombe sur la surface totale des 1 865 km2 de la ville. Les précipitations annuelles de 1131 millimètres –  donc 1,131 m3 – par mètre carré donnent 1865000 m2 * 1,131 m3/m2 =  2 109 315 m3. Cela voulait dire que selon les calculs de Shao et al. l’infrastructure – éponge de Xiamen absorbe 8 fois plus d’eau de pluie qu’il y a de pluie. Ambitieux mais peu réaliste.  La hydrologie, c’est compliqué. Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ? Vous pouvez me contacter à travers la boîte électronique de ce blog : .

[1] Shao, W., Liu, J., Yang, Z., Yang, Z., Yu, Y., & Li, W. (2018). Carbon Reduction Effects of Sponge City Construction: A Case Study of the City of Xiamen. Energy Procedia, 152, 1145-1151.

[2] dernier accès 30 Juin 2019

[1] dernier accès 30 Juin 2019

[1] Katsifarakis, K. L., Vafeiadis, M., & Theodossiou, N. (2015). Sustainable drainage and urban landscape upgrading using rain gardens. Site selection in Thessaloniki, Greece. Agriculture and agricultural science procedia, 4, 338-347.

[1] Hatata, A. Y., El-Saadawi, M. M., & Saad, S. (2019). A feasibility study of small hydro power for selected locations in Egypt. Energy Strategy Reviews, 24, 300-313.

Another idea – urban wetlands

My editorial on You Tube

I have just come with an idea. One of those big ones, the kind that pushes you to write a business plan and some scientific stuff as well. Here is the idea: a network of ponds and waterways, made in the close vicinity of a river, being both a reservoir of water – mostly the excess rainwater from big downpours – and a location for a network of small water turbines. The idea comes from a few observations, as well as other ideas, that I had over the last two years. Firstly. in Central Europe, we have less and less water from the melting snow – as there is almost no snow anymore in winter – and more and more water from sudden, heavy rain. We need to learn how to retain rainwater in the most efficient way. Secondly, as we have local floods due to heavy rains, some sort of spontaneous formation of floodplains happens. Even if there is no visible pond, the ground gets a bit spongy and soaked, flood after flood. We have more and more mosquitoes. If it is happening anyway, let’s use it creatively. This particular point is visualised in the map below, with the example of Central and Southern Europe. Thus, my idea is to utilise purposefully a naturally happening phenomenon, component of climate change.

Source: last access June 20th, 2019

Thirdly, there is some sort of new generation in water turbines: a whole range of small devices, simple and versatile, has come to the market.  You can have a look at what those guys at Blue Freedom are doing. Really interesting. Hydroelectricity can now be approached in an apparently much less capital-intensive way. Thus, the idea I have is to arrange purposefully the floodplains we have in Europe into as energy-efficient and carbon-efficient places as possible. I give the general idea graphically in the picture below.

I am approaching the whole thing from the economics’ point of view, i.e. I want a piece of floodplain arranged into this particular concept to have more value, financial value included, than the same piece of floodplain just being ignored in its inherent potential. I can see two distinct avenues for developing the concept: that of a generally wild, uninhabited floodplain, like public land, as opposed to an inhabited floodplain, under incumbent or ongoing construction, residential or other. The latter is precisely what I want to focus on. I want to study, and possibly to develop a business plan for a human habitat combined with a semi-aquatic ecosystem, i.e. a network of ponds, waterways and water turbines in places where people live and work. Hence, from the geographic point of view, I am focusing on places where the secondary formation of floodplain-type of terrain already occurs in towns and cities, or in the immediate vicinity thereof. For more than one century, the growth of urban habitats has been accompanied by the entrenching of waterways in strictly defined, concrete-reinforced beds. I want to go the other way, and let those rivers spill around their waters, into wetlands, in a manner beneficial to human dwelling.

My initial approach to the underlying environmental concept is market based. Can we create urban wetlands, in flood-threatened areas, where the presence of the explicitly and purposefully arranged aquatic structures increases the value of property so as to top the investment required? I start with the most fundamental marks in the environment. I imagine a piece of land in an urban area. It has its present market value, and I want to study its possible value in the future.

I imagine a piece of land located in an urban area with the characteristics of a floodplain, i.e. recurrently threatened by local floods or the secondary effects thereof. At the moment ‘t’, that piece of land has a market value M(t) = S * m(t), being the product of its total surface S, constant over time, and the market price m(t) per unit of surface, changing over time. There are two moments in time, i.e. the initial moment t0, and the subsequent moment t1, after the development into urban wetland. Said development requires a stream of investment I(t0 -> t1). I want to study the conditions for M(t1) – M(t0) > I(t0 -> t1). As surface S is constant over time, my problem breaks down into units of surface, whence the aggregate investment I(t0 -> t1) being decomposed into I(t0 -> t1) = S * i(t0 -> t1), and the problem restated as m(t1) – m(t0) >  i(t0 -> t1).

I assume the market price m(t) is based on two types of characteristics: those directly measurable as financials, for one, e.g. the average wage a resident can expect from a locally based job, and those more diffuse ones, whose translation into financial variables is subtler, and sometimes pointless. I allow myself to call the latter ones ‘environmental services’. They cover quite a broad range of phenomena, ranging from the access to clean water outside the public water supply system, all the way to subjectively perceived happiness and well-being. All in all, mathematically, I say m(t) = f(x1, x2, …, xk) : the market price of construction land in cities is a function of k variables. Consistently with the above, I assume that f[t1; (x1, x2, …, xk)] – f[t0; (x1, x2, …, xk)] > i(t0 -> t1).    

It is intellectually honest to tackle those characteristics of urban land that make its market price. There is a useful observation about cities: anything that impacts the value of urban real estate, sooner or later translates into rent that people are willing to pay for being able to stay there. Please, notice that even when we own a piece of real estate, i.e. when we have property rights to it, we usually pay to someone some kind of periodic allowance for being able to execute our property rights fully: the real estate tax, the maintenance fee paid to the management of residential condominiums, the fee for sanitation service (e.g. garbage collection) etc. Any urban piece of land has a rent tag attached. Even those characteristics of a place, which pertain mostly to the subjectively experienced pleasure and well-being derived out of staying there have a rent-like price attached to them, at the end of the day.

Good. I have made a sketch of the thing. Now, I am going to pass in review some published research, in order to set my landmarks. I start with some literature regarding urban planning, and as soon as I do so, I discover an application for artificial intelligence, a topic of interest for me, those last months. Lyu et al. (2017[1]) present a method for procedural modelling of urban layout, and in their work, I can spot something similar to the equations I have just come up with: complex analysis of land-suitability. It starts with dividing the total areal of urban land at hand, in a given city, into standard units of surface. Geometrically, they look nice when they are equisized squares. Each unit ‘i’ can be potentially used for many alternative purposes. Lyu et al. distinguish 5 typical uses of urban land: residential, industrial, commercial, official, and open & green. Each such surface unit ‘i’ is endowed with a certain suitability for different purposes, and this suitability is the function of a finite number of factors. Formally, the suitability sik of land unit i for use k is a weighted average over a vector of factors, where wkj is the weight of factor j for land use k, and rij is the rating of land unit i on factor j. Below, I am trying to reproduce graphically the general logic of this approach.

In a city approached analytically with the general method presented above, Lyu et al. (2017[1]) distribute three layers of urban layout: population, road network, and land use. It starts with an initial state (input state) of population, land use, and available area. In a first step of the procedure, a simulation of highways and arterial transport connections is made. The transportation grid suggests some kind of division of urban space into districts. As far as I understand it, Lyu et al. define districts as functional units with the quantitative dominance of certain land uses, i.e. residential vs. industrial rather than rich folks’ estate vs. losers’ end, sort of.

As a first sketch of district division is made, it allows simulating a first distribution of population in the city, and a first draft of land use. The distribution of population is largely a distribution of density in population, and the corresponding transportation grid is strongly correlated with it. Some modes of urban transport work only above some critical thresholds in the density of population. This is an important point: density of population is a critical variable in social sciences.

Then, some kind of planning freedom can be allowed inside districts, which results in a second draft of spatial distribution in population, where a new type of unit – a neighbourhood – appears. Lyu et al. do not explain in detail the concept of neighbourhood, and yet it is interesting. It suggests the importance of spontaneous settlement vs. that of planned spatial arrangement.

I am strongly attached to that notion of spontaneous settlement. I am firmly convinced that on the long run people live where they want to live, and urban planning can just make that process somehow smoother and more efficient. Thus comes another article in my review of literature, by Mahmoud & Divigalpitiya (2019[2]). By the way, I have an interesting meta-observation: most recent literature about urban development is based on empirical research in emerging economies and in developing countries, with the U.S. coming next, and Europe lagging far behind. In Europe, we do very little research about our own social structures, whilst them Egyptians or Thais are constantly studying the way they live collectively.

Anyway, back to by Mahmoud & Divigalpitiya (2019[3]), the article is interesting from my point of view because its authors study the development of new towns and cities. For me, it is an insight into how the radically new urban structures sink into the incumbent spatial distribution of population. The specific background of this particular study is a public policy of the Egyptian government to establish, in a planned manner, new cities some distance away from the Nile, and do it so as to minimize the encroachment on agricultural land. Thus, we have scarce space and people to fit into, with optimal use of land.

As I study that paper by Mahmoud & Divigalpitiya, some kind of extension to my initial idea emerges. Those researchers report that with proper water and energy management, more specifically with the creation of irrigative structures like those which I came up with – networks of ponds and waterways – paired with a network of small hydropower units, it is possible both to accommodate an increase of 90% in local urban population, and create 3,75% more of agricultural land. Another important finding about those new urban communities in Egypt is that they tend to grow by sprawl rather than by distant settlement. New city dwellers tend to settle close to the incumbent residents, rather than in more remote locations. In simple words: it is bloody hard to create a new city from scratch. Habits and social links are like a tangible expanse of matter, which opposes resistance to distortions.

I switch to another paper based on Egyptian research, namely that by Hatata et al. 2019[4], relative to the use of small hydropower generators. The paper is rich in technicalities, and therefore I note to come back to it many times when I will be going more into the details of my concept. For now, I have a few general takeaways. Firstly, it is wise to combine small hydro off grid with that connected to the power grid, and more generally, small hydro looks like a good complementary source of power, next to a regular grid, rather than a 100% autonomous power base. Still, full autonomy is possible, mostly with the technology of Permanent Magnet Synchronous Generator. Secondly, Hatata et al. present a calculation of economic value in hydropower projects, based on their Net Present Value, which, in turn, is calculated on the grounds of a basic assumption that hydropower installations carry some residual capital value Vr over their entire lifetime, and additionally can generate a current cash flow determined by: a) the revenue Rt from the sales of energy b) the locally needed investment It c) the operating cost Ot and d) the maintenance cost Mt, all that in the presence of a periodic discount rate r.

I am consistently delivering good, almost new science to my readers, and love doing it, and I am working on crowdfunding this activity of mine. You can communicate with me directly, via the mailbox of this blog: As we talk business plans, I remind you that you can download, from the library of my blog, the business plan I prepared for my semi-scientific project Befund  (and you can access the French version as well). You can also get a free e-copy of my book ‘Capitalism and Political Power’ You can support my research by donating directly, any amount you consider appropriate, to my PayPal account. You can also consider going to my Patreon page and become my patron. If you decide so, I will be grateful for suggesting me two things that Patreon suggests me to suggest you. Firstly, what kind of reward would you expect in exchange of supporting me? Secondly, what kind of phases would you like to see in the development of my research, and of the corresponding educational tools?

[1] Lyu, X., Han, Q., & de Vries, B. (2017). Procedural modeling of urban layout: population, land use, and road network. Transportation research procedia, 25, 3333-3342.

[2] Mahmoud, H., & Divigalpitiya, P. (2019). Spatiotemporal variation analysis of urban land expansion in the establishment of new communities in Upper Egypt: A case study of New Asyut city. The Egyptian Journal of Remote Sensing and Space Science, 22(1), 59-66.

[3] Mahmoud, H., & Divigalpitiya, P. (2019). Spatiotemporal variation analysis of urban land expansion in the establishment of new communities in Upper Egypt: A case study of New Asyut city. The Egyptian Journal of Remote Sensing and Space Science, 22(1), 59-66.

[4] Hatata, A. Y., El-Saadawi, M. M., & Saad, S. (2019). A feasibility study of small hydro power for selected locations in Egypt. Energy Strategy Reviews, 24, 300-313.

Sketching quickly alternative states of nature

My editorial on You Tube

I am thinking about a few things, as usually, and, as usually, it is a laborious process. The first one is a big one: what the hell am I doing what I am doing for? I mean, what’s the purpose and the point of applying artificial intelligence to simulating collective intelligence? There is one particular issue that I am entertaining in this regard: the experimental check. A neural network can help me in formulating very precise hypotheses as for how a given social structure can behave. Yet, these are hypotheses. How can I have them checked?

Here is an example. Together with a friend, we are doing some research about the socio-economic development of big cities in Poland, in the perspective of seeing them turning into so-called ‘smart cities’. We came to an interesting set of hypotheses generated by a neural network, but we have a tiny little problem: we propose, in the article, a financial scheme for cities but we don’t quite understand why we propose this exact scheme. I know it sounds idiotic, but well: it is what it is. We have an idea, and we don’t know exactly where that idea came from.

I have already discussed the idea in itself on my blog, in « Locally smart. Case study in finance.» : a local investment fund, created by the local government, to finance local startup businesses. Business means investment, especially at the aggregate scale and in the long run. This is how business works: I invest, and I have (hopefully) a return on my investment. If there is more and more private business popping up in those big Polish cities, and, in the same time, local governments are backing off from investment in fixed assets, let’s make those business people channel capital towards the same type of investment that local governments are withdrawing from. What we need is an institutional scheme where local governments financially fuel local startup businesses, and those businesses implement investment projects.

I am going to try and deconstruct the concept, sort of backwards. I am sketching the landscape, i.e. the piece of empirical research that brought us to formulating the whole idea of investment fund paired with crowdfunding.  Big Polish cities show an interesting pattern of change: local populations, whilst largely stagnating demographically, are becoming more and more entrepreneurial, which is observable as an increasing number of startup businesses per 10 000 inhabitants. On the other hand, local governments (city councils) are spending a consistently decreasing share of their budgets on infrastructural investment. There is more and more business going on per capita, and, in the same time, local councils seem to be slowly backing off from investment in infrastructure. The cities we studied as for this phenomenon are: Wroclaw, Lodz, Krakow, Gdansk, Kielce, Poznan, Warsaw.

More specifically, the concept tested through the neural network consists in selecting, each year, 5% of the most promising local startups, and funds each of them with €80 000. The logic behind this concept is that when a phenomenon becomes more and more frequent – and this is the case of startups in big Polish cities – an interesting strategy is to fish out, consistently, the ‘crème de la crème’ from among those frequent occurrences. It is as if we were soccer promotors in a country, where more and more young people start playing at a competitive level. A viable strategy consists, in such a case, in selecting, over and over again, the most promising players from the top of the heap and promote them further.

Thus, in that hypothetical scheme, the local investment fund selects and supports the most promising from amongst the local startups. Mind you, that 5% rate of selection is just an idea. It could be 7% or 3% just as well. A number had to be picked, in order to simulate the whole thing with a neural network, which I present further. The 5% rate can be seen as an intuitive transference from the s-Student significance test in statistics. When you test a correlation for its significance, with the t-Student test, you commonly assume that at least 95% of all the observations under scrutiny is covered by that correlation, and you can tolerate a 5% outlier of fringe cases. I suppose this is why we picked, intuitively, that 5% rate of selection among the local startups: 5% sounds just about right to delineate the subset of most original ideas.

Anyway, the basic idea consists in creating a local investment fund controlled by the local government, and this fund would provide a standard capital injection of €80 000 to 5% of most promising local startups. The absolute number STF (i.e. financed startups) those 5% translate into can be calculated as: STF = 5% * (N/10 000) * ST10 000, where N is the population of the given city, and ST10 000 is the coefficient of startup businesses per 10 000 inhabitants. Just to give you an idea what it looks like empirically, I am presenting data for Krakow (KR, my hometown) and Warsaw (WA, Polish capital), in 2008 and 2017, which I designate, respectively, as STF(city_acronym; 2008) and STF(city_acronym; 2017). It goes like:

STF(KR; 2008) = 5% * (754 624/ 10 000) * 200 = 755

STF(KR; 2017) = 5* * (767 348/ 10 000) * 257 = 986

STF(WA; 2008) = 5% * (1709781/ 10 000) * 200 = 1 710

STF(WA; 2017) = 5% * (1764615/ 10 000) * 345 = 3 044   

That glimpse of empirics allows guessing why we applied a neural network to that whole thing: the two core variables, namely population and the coefficient of startups per 10 000 people, can change with a lot of autonomy vis a vis each other. In the whole sample that we used for basic stochastic analysis, thus 7 cities from 2008 through 2017 equals 70 observations, those two variables are Pearson-correlated at r = 0,6267. There is some significant correlation, and yet some 38% of observable variance in each of those variables doesn’t give a f**k about the variance of the other variable. The covariance of these two seems to be dominated by the variability in population rather than by uncertainty as for the average number of startups per 10 000 people.

What we have is quite predictable a trend of growing propensity to entrepreneurship, combined with a bit of randomness in demographics. Those two can come in various duos, and their duos tend to be actually trios, ‘cause we have that other thing, which I already mentioned: investment outlays of local governments and the share of those outlays in the overall local budgets. Our (my friend’s and mine) intuitive take on that picture was that it is really interesting to know the different ways those Polish cities can go in the future, rather that setting one central model. I mean, the central stochastic model is interesting too. It says, for example, that the natural logarithm of the number of startups per 10 000 inhabitants, whilst being negatively correlated with the share of investment outlays in the local government’s budget, it is positively correlated with the absolute amount of those outlays. The more a local government spends on fixed assets, the more startups it can expect per 10 000 inhabitants. That latter variable is subject to some kind of scale effects from the part of the former. Interesting. I like scale effects. They are intriguing. They show phenomena, which change in a way akin to what happens when I heat up a pot full of water: the more heat have I supplied to water, the more different kinds of stuff can happen. We call it increase in the number of degrees of freedom.

The stochastically approached degrees of freedom in the coefficient of startups per 10 000 inhabitants, you can see them in Table 1, below. The ‘Ln’ prefix means, of course, natural logarithms. Further below, I return to the topic of collective intelligence in this specific context, and to using artificial intelligence to simulate the thing.

Table 1

Explained variable: Ln(number of startups per 10 000 inhabitants) R2 = 0,608 N = 70
Explanatory variable Coefficient of regression Standard error Significance level
Ln(investment outlays of the local government) -0,093 0,048 p = 0,054
Ln(total budget of the local government) 0,565 0,083 p < 0,001
Ln(population) -0,328 0,09 p < 0,001
Constant    -0,741 0,631 p = 0,245

I take the correlations from Table 1, thus the coefficients of regression from the first numerical column, and I check their credentials with the significance level from the last numerical column. As I want to understand them as real, actual things that happen in the cities studied, I recreate the real values. We are talking about coefficients of startups per 10 000 people, comprised somewhere the observable minimum ST10 000 = 140, and the maximum equal to ST10 000 = 345, with a mean at ST10 000 = 223. It terms of natural logarithms, that world folds into something between ln(140) = 4,941642423 and ln(345) = 5,843544417, with the expected mean at ln(223) = 5,407171771. Standard deviation Ω from that mean can be reconstructed from the standard error, which is calculated as s = Ω/√N, and, consequently, Ω = s*√N. In this case, with N = 70, standard deviation Ω = 0,631*√70 = 5,279324767.  

That regression is interesting to the extent that it leads to an absurd prediction. If the population of a city shrinks asymptotically down to zero, and if, in the same time, the budget of the local government swells up to infinity, the occurrence of entrepreneurial behaviour (number of startups per 10 000 inhabitants) will tend towards infinity as well. There is that nagging question, how the hell can the budget of a local government expand when its tax base – the population – is collapsing. I am an economist and I am supposed to answer questions like that.

Before being an economist, I am a scientist. I ask embarrassing questions and then I have to invent a way to give an answer. Those stochastic results I have just presented make me think of somehow haphazard a set of correlations. Such correlations can be called dynamic, and this, in turn, makes me think about the swarm theory and collective intelligence (see Yang et al. 2013[1] or What are the practical outcomes of those hypotheses being true or false?). A social structure, for example that of a city, can be seen as a community of agents reactive to some systemic factors, similarly to ants or bees being reactive to pheromones they produce and dump into their social space. Ants and bees are amazingly intelligent collectively, whilst, let’s face it, they are bloody stupid singlehandedly. Ever seen a bee trying to figure things out in the presence of a window? Well, not only can a swarm of bees get that s**t down easily, but also, they can invent a way of nesting in and exploiting the whereabouts of the window. The thing is that a bee has its nervous system programmed to behave smartly mostly in social interactions with other bees.

I have already developed on the topic of money and capital being a systemic factor akin to a pheromone (see Technological change as monetary a phenomenon). Now, I am walking down this avenue again. What if city dwellers react, through entrepreneurial behaviour – or the lack thereof – to a certain concentration of budgetary spending from the local government? What if the budgetary money has two chemical hooks on it – one hook observable as ‘current spending’ and the other signalling ‘investment’ – and what if the reaction of inhabitants depends on the kind of hook switched on, in the given million of euros (or rather Polish zlotys, or PLN, as we are talking about Polish cities)?

I am returning, for a moment, to the negative correlation between the headcount of population, on the one hand, and the occurrence of new businesses per 10 000 inhabitants. Cities – at least those 7 Polish cities that me and my friend did our research on – are finite spaces. Less people in the city means less people per 1 km2 and vice versa. Hence, the occurrence of entrepreneurial behaviour is negatively correlated with the density of population. A behavioural pattern emerges. The residents of big cities in Poland develop entrepreneurial behaviour in response to greater a concentration of current budgetary spending by local governments, and to lower a density of population. On the other hand, greater a density of population or less money spent as current payments from the local budget act as inhibitors of entrepreneurship. Mind you, greater a density of population means greater a need for infrastructure – yes, those humans tend to crap and charge their smartphones all over the place – whence greater a pressure on the local governments to spend money in the form of investment in fixed assets, whence the secondary in its force, negative correlation between entrepreneurial behaviour and investment outlays from local budgets.

This is a general, behavioural hypothesis. Now, the cognitive challenge consists in translating the general idea into as precise empirical hypotheses as possible. What precise states of nature can happen in those cities? This is when artificial intelligence – a neural network – can serve, and this is when I finally understand where that idea of investment fund had come from. A neural network is good at producing plausible combinations of values in a pre-defined set of variables, and this is what we need if we want to formulate precise hypotheses. Still, a neural network is made for learning. If I want the thing to make those hypotheses for me, I need to give it a purpose, i.e. a variable to optimize, and learn as it is optimizing.

In social sciences, entrepreneurial behaviour is assumed to be a good thing. When people recurrently start new businesses, they are in a generally go-getting frame of mind, and this carries over into social activism, into the formation of institutions etc. In an initial outburst of neophyte enthusiasm, I might program my neural network so as to optimize the coefficient of startups per 10 000 inhabitants. There is a catch, though. When I tell a neural network to optimize a variable, it takes the most likely value of that variable, thus, stochastically, its arithmetical average, and it keeps recombining all the other variables so as to have this one nailed down, as close to that most likely value as possible. Therefore, if I want a neural network to imagine relatively high occurrences of entrepreneurial behaviour, I shouldn’t set said behaviour as the outcome variable. I should mix it with others, as an input variable. It is very human, by the way. You brace for achieving a goal, you struggle the s**t out of yourself, and you discover, with negative amazement, that instead of moving forward, you are actually repeating the same existential pattern over and over again. You can set your personal compass, though, on just doing a good job and having fun with it, and then, something strange happens. Things get done sort of you haven’t even noticed when and how. Goals get nailed down even without being phrased explicitly as goals. And you are having fun with the whole thing, i.e. with life.

Same for artificial intelligence, as it is, as a matter of fact, an artful expression of our own, human intelligence: it produces the most interesting combinations of variables as a by-product of optimizing something boring. Thus, I want my neural network to optimize on something not-necessarily-fascinating and see what it can do in terms of people and their behaviour. Here comes the idea of an investment fund. As I have been racking my brains in the search of place where that idea had come from, I finally understood: an investment fund is both an institutional scheme, and a metaphor. As a metaphor, it allows decomposing an aggregate stream of investment into a set of more or less autonomous projects, and decisions attached thereto. An investment fund is a set of decisions coordinated in a dynamically correlated manner: yes, there are ways and patterns to those decisions, but there is a lot of autonomous figuring-out-the-thing in each individual case.

Thus, if I want to put functionally together those two social phenomena – investment channelled by local governments and entrepreneurial behaviour in local population – an investment fund is a good institutional vessel to that purpose. Local government invests in some assets, and local homo sapiens do the same in the form of startups. What if we mix them together? What if the institutional scheme known as public-private partnership becomes something practiced serially, as a local market for ideas and projects?

When we were designing that financial scheme for local governments, me and my friend had the idea of dropping a bit of crowdfunding into the cooking pot, and, as strange as it could seem, we are bit confused as for where this idea came from. Why did we think about crowdfunding? If I want to understand how a piece of artificial intelligence simulates collective intelligence in a social structure, I need to understand what kind of logical connections had I projected into the neural network. Crowdfunding is sort of spontaneous. When I am having a look at the typical conditions proposed by businesses crowdfunded at Kickstarter or at StartEngine, these are shitty contracts, with all the due respect. Having a Master’s in law, when I look at the contracts offered to investors in those schemes, I wouldn’t sign such a contract if I had any room for negotiation. I wouldn’t even sign a contract the way I am supposed to sign it via a crowdfunding platform.

There is quite a strong piece of legal and business science to claim that crowdfunding contracts are a serious disruption to the established contractual patterns (Savelyev 2017[2]). Crowdfunding largely rests on the so-called smart contracts, i.e. agreements written and signed as software on Blockchain-based platforms. Those contracts are unusually flexible, as each amendment, would it be general or specific, can be hash-coded into the history of the individual contractual relation. That puts a large part of legal science on its head. The basic intuition of any trained lawyer is that we negotiate the s**t of ourselves before the signature of the contract, thus before the formulation of general principles, and anything that happens later is just secondary. With smart contracts, we are pretty relaxed when it comes to setting the basic skeleton of the contract. We just put the big bones in, and expect we gonna make up the more sophisticated stuff as we go along.

With the abundant usage of smart contracts, crowdfunding platforms have peculiar legal flexibility. Today you sign up for having a discount of 10% on one Flower Turbine, in exchange of £400 in capital crowdfunded via a smart contract. Next week, you learn that you can turn your 10% discount on one turbine into 7% on two turbines if you drop just £100 more into that pig coin. Already the first step (£400 against the discount of 10%) would be a bit hard to squeeze into classical contractual arrangements as for investing into the equity of a business, let alone the subsequent amendment (Armour, Enriques 2018[3]).

Yet, with a smart contract on a crowdfunding platform, anything is just a few clicks away, and, as astonishing as it could seem, the whole thing works. The click-based smart contracts are actually enforced and respected. People do sign those contracts, and moreover, when I mentally step out of my academic lawyer’s shoes, I admit being tempted to sign such a contract too. There is a specific behavioural pattern attached to crowdfunding, something like the Russian ‘Davaj, riebiata!’ (‘Давай, ребята!’ in the original spelling). ‘Let’s do it together! Now!’, that sort of thing. It is almost as I were giving someone the power of attorney to be entrepreneurial on my behalf. If people in big Polish cities found more and more startups, per 10 000 residents, it is a more and more recurrent manifestation of entrepreneurial behaviour, and crowdfunding touches the very heart of entrepreneurial behaviour (Agrawal et al. 2014[4]). It is entrepreneurship broken into small, tradable units. The whole concept we invented is generally placed in the European context, and in Europe crowdfunding is way below the popularity it has reached in North America (Rupeika-Aboga, Danovi 2015[5]). As a matter of fact, European entrepreneurs seem to consider crowdfunding as really a secondary source of financing.

Time to sum up a bit all those loose thoughts. Using a neural network to simulate collective behaviour of human societies involves a few deep principles, and a few tricks. When I study a social structure with classical stochastic tools and I encounter strange, apparently paradoxical correlations between phenomena, artificial intelligence may serve. My intuitive guess is that a neural network can help in clarifying what is sometimes called ‘background correlations’ or ‘transitive correlations’: variable A is correlated with variable C through the intermediary of variable B, i.e. A is significantly correlated with B, and B is significantly correlated with C, but the correlation between A and C remains insignificant.

When I started to use a neural network in my research, I realized how important it is to formulate very precise and complex hypotheses rather than definitive answers. Artificial intelligence allows to sketch quickly alternative states of nature, by gazillions. For a moment, I am leaving the topic of those financial solutions for cities, and I return to my research on energy, more specifically on energy efficiency. In a draft article I wrote last autumn, I started to study the relative impact of the velocity of money, as well as that of the speed of technological change, upon the energy efficiency of national economies. Initially, I approached the thing in the nicely and classically stochastic a way. I came up with conclusions of the type: ‘variance in the supply of money makes 7% of the observable variance in energy efficiency, and the correlation is robust’. Good, this is a step forward. Still, in practical terms, what does it give? Does it mean that we need to add money to the system in order to have greater an energy efficiency? Might well be the case, only you don’t add money to the system just like that, ‘cause most of said money is account money on current bank accounts, and the current balances of those accounts reflect the settlement of obligations resulting from complex private contracts. There is no government that could possibly add more complex contracts to the system.

Thus, stochastic results, whilst looking and sounding serious and scientific, have remote connexion to practical applications. On the other hand, if I take the same empirical data and feed it into a neural network, I get alternative states of nature, and those states are bloody interesting. Artificial intelligence can show me, for example, what happens to energy efficiency if a social system is more or less conservative in its experimenting with itself. In short, artificial intelligence allows super-fast simulation of social experiments, and that simulation is theoretically robust.

I am consistently delivering good, almost new science to my readers, and love doing it, and I am working on crowdfunding this activity of mine. You can communicate with me directly, via the mailbox of this blog: As we talk business plans, I remind you that you can download, from the library of my blog, the business plan I prepared for my semi-scientific project Befund  (and you can access the French version as well). You can also get a free e-copy of my book ‘Capitalism and Political Power’ You can support my research by donating directly, any amount you consider appropriate, to my PayPal account. You can also consider going to my Patreon page and become my patron. If you decide so, I will be grateful for suggesting me two things that Patreon suggests me to suggest you. Firstly, what kind of reward would you expect in exchange of supporting me? Secondly, what kind of phases would you like to see in the development of my research, and of the corresponding educational tools?

[1] Yang, X. S., Cui, Z., Xiao, R., Gandomi, A. H., & Karamanoglu, M. (2013). Swarm intelligence and bio-inspired computation: theory and applications.

[2] Savelyev, A. (2017). Contract law 2.0:‘Smart’contracts as the beginning of the end of classic contract law. Information & Communications Technology Law, 26(2), 116-134.

[3] Armour, J., & Enriques, L. (2018). The promise and perils of crowdfunding: Between corporate finance and consumer contracts. The Modern Law Review, 81(1), 51-84.

[4] Agrawal, A., Catalini, C., & Goldfarb, A. (2014). Some simple economics of crowdfunding. Innovation Policy and the Economy, 14(1), 63-97

[5] Rupeika-Apoga, R., & Danovi, A. (2015). Availability of alternative financial resources for SMEs as a critical part of the entrepreneurial eco-system: Latvia and Italy. Procedia Economics and Finance, 33, 200-210.

Mémoires du cycliste reconverti

Mon éditorial sur You Tube

Je réfléchis sur les tendances que j’observe dans le secteur d’énergie. Je reformule ce que je viens de signaler dans « Lean, climbing trends » : le côté consommation d’énergie change selon un schéma très différent du côté production d’énergie. Côté consommation, nous pouvons observer des tendances relativement stables et croissantes, centrées autour deux indicateurs : de la consommation d’énergie par tête d’habitant et du pourcentage de la population avec accès à l’électricité. Côté production, c’est structurellement différent. Les carburants fossiles, le nucléaire, l’hydraulique, l’éolien, le solaire : notre activité agrégée avec toutes ces sources d’énergie semble être un assemblage un peu aléatoire d’expérimentations plus ou moins indépendantes l’une de l’autre.

Lorsque je me pose des questions sur l’intelligence collective, je retourne vers l’intelligence individuelle et celle qui est la plus proche est la mienne. Je viens de me rendre compte que pendant les deux dernières années, j’ai radicalement changé mon mode de vie, pour un mode nettement plus éco qu’auparavant, seulement le truc marrant c’est que je n’avais pas du tout l’intention de devenir plus éco. Ça avait tout commencé avec le vélo. J’avais commencé à circuler à travers la ville à vélo. Très vite, j’ai découvert ce sens spécial de liberté que le vélo donne dans l’environnement urbain. Mon cerveau a commencé à associer la voiture avec une claustration forcée plutôt qu’avec la liberté de déplacement. Bientôt, j’avais commencé à me rendre à vélo à mon lieu de travail – l’université – quelques 10 km de mon domicile. Ma bagnole, elle passait de plus en plus de temps garée à côté de la maison.

L’hiver dernier était ce que les hivers sont devenus, donc une sorte d’automne un peu froid. Voilà que j’ai découvert que rouler à vélo par un temps comme ça, lorsque la température est à peine au-dessus de zéro, donne une injection folle d’endorphines. C’était carrément enivrant et je peux vous dire qu’à la cinquantaine, faire 20 km aller-retour à vélo et se sentir bien après, c’est une découverte en soi. Comme je prenais de plus en plus l’habitude du vélo, je m’étais rendu compte que mon style de vie change. Lorsque je faisais mes courses, sur le chemin de retour de la fac, j’achetais ce que je pouvais transporter dans les sacoches de derrière de mon vélo plus ce que je pouvais fourrer dans mon sac à dos, où je transporte ma tenue de travail : veste, chemise, pantalons de ville. Le vélo m’avait obligé à économiser sur le volume de mes course quotidiennes et le truc intéressant est que ce volume réduit était tout à fait suffisant. Je me suis rendu compte qu’une partie substantielle de ce que j’achète en me déplaçant en voiture, eh bien, je l’achète juste parce que je peux (j’ai de l’espace cargo disponible) et non parce que j’en ai vraiment besoin.

J’ai fait mes calculs. J’ai utilisé la page pour calculer les émissions de CO2 de ma voiture et voilà : une journée de déplacement à vélo, avec mon Honda Civic m’attendant gentiment à la maison, se traduit en des économies de 4,5 kilogrammes de dioxyde de carbone. Selon les données de la Banque Mondiale[1], en 2014, chez moi, en Pologne, les émissions de CO2 par tête d’habitant étaient de 7,5 tonnes par an, contre une moyenne mondiale de 4,97 tonnes par an. Le transport correspond à environ 20%[2] de ces émissions, donc à 1,5 tonnes par an, soit 4,1 kilogrammes par jour en moyenne. Ces 4,5 kilo de CO2 par jour, ça a donc l’air cohérent avec le style de vie d’un Polonais moyen.

Mes économies sur les courses journalières, lorsque je pédale, ça fait à peu de choses près €30 par semaine. En utilisant encore une fois la page je l’ai recalculé en 4,5 kilogrammes de CO2 économisés par jour. Ça alors ! De tout en tout, une journée à vélo, dans mon contexte social précis, semble correspondre à quelques 9 kilogrammes de CO2 de moins, par rapport à la même journée en bagnole. Les moins ont des plus, remarquez. Lorsque je pédale, j’amortis physiquement ma bicyclette. Chaque kilomètre me rapproche du moment de la révision annuelle aussi bien que du moment où il sera nécessaire de changer de vélo ou bien de rénover radicalement celui que j’ai maintenant (Gazelle Chamonix C-7). J’ai utilisé les calculs présentés à la page plus la calculatrice de conversion des kilojoules d’énergie en du CO2 émis et ça a donné 150 grammes de CO2 par jour en équivalent d’amortissement physique de ma bicyclette.

De tout en tout, une journée ouvrable passée en mode vélo correspond, dans mon style de vie individuel, à une réduction nette d’émissions d’environ 9 – 0,15 = 8,85 kg de CO2. J’ai récréé mon agenda de l’année 2018 et ça a donné quelques 130 jours ouvrables lorsque je remplaçais la voiture avec le vélo. Remarquez, lorsque le temps devient suffisamment hivernal pour qu’il y ait une couche de vieille neige ou du verglas sur les sentiers cyclistes, je me rends. Je me suis déjà cassé la gueule quelques fois dans des conditions comme ça et j’ai appris que le vélo a ses limites. Quoi qu’il en soit, les 130 jours en 2018 correspondent à une réduction individuelle d’émissions de CO2 équivalente à environ 1,15 tonnes, soit de 15,3% par rapport aux émissions annuelles moyennes par tête d’habitant en Pologne.

Voilà donc que j’ai changé de mode de transport et ceci m’a poussé à modifier mon style de consommation. De plus en plus éco à chaque pas. Seulement, ce n’était pas mon but. Ça avait tout commencé parce que je voulais me déplacer d’une façon plus confortable et j’en avais marre de passer du temps dans les embouteillages. Très honnêtement, je ne pensais pas beaucoup à l’environnement. J’étais très loin du type Capitaine Planète. Bien sûr, je savais qu’en laissant ma voiture roupiller paisiblement chez moi, j’économise du carburant, mais c’étaient des pensées vagues. Ça s’était passé tout seul. Chaque petit changement en entraînait un autre, comme je recevais des récompenses momentanées. Aucune privation consciente. C’était une revisite du côté de chez Adam Smith : en suivant des fins égoïstes j’avais accompli un changement favorable à l’environnement.

Mon environnement m’a offert des stimuli pour changer mon style de vie. Imaginons des milliers de personnes comme moi. Des petites découvertes quotidiennes, des petits changements personnels suivis par des récompenses immédiates : l’environnement urbain donné offre un ensemble fini de telles récompenses. Eh bien, oui, c’est fini en volume, ces récompenses. Si dès maintenant 50 000 personnes dans ma ville (Krakow, Pologne) font le même changement que moi j’avais fait, les sentiers cyclistes seront complètement bouchés et les récompenses, ça va devenir beaucoup plus problématique. Au moment donné, la ville relâche un nuage diffus et néanmoins fini en volume des récompenses comportementales qu’un certain nombre de cyclistes peut absorber et ça provoque un changement de style de vie.

J’essaie d’être plus précis. La population officielle de la ville de Krakow c’est environ 800 000 personnes. Avec les immigrés non-registrés comme résidents permanents ainsi qu’avec les migrants journaliers qui viennent des localités satellites, comme moi je le fais, j’estime la population totale réelle de ma ville bien aimée à quelques 1 200 000 personnes. Cette population coexiste avec environ 230 km des sentiers cyclistes ainsi qu’avec une flotte automobile (toutes catégories prises ensemble) de 570 000 à peu près. Chaque addition à la flotte automobile crée un renforcement négatif en ce qui concerne l’utilisation individuelle de la voiture et en même temps un renforcement positif indirect pour penser à quelque chose d’autre. Chaque addition à la longueur totale des sentiers cyclistes produit du renforcement positif en faveur de circulation à vélo. En termes de production de ces stimuli, la ville de Krakow avait produit, durant la période de 2011 à 2018, 122 kilomètres additionnels des sentiers cyclistes et une flotte additionnelle d’environ 115 000 automobiles. Cette combinaison des renforcements négatifs vis-à-vis de la voiture et positifs vis-à-vis de la bicyclette. Résultat : en 2016, selon les données du Conseil Municipal, environ 90 000 personnes utilisaient le vélo comme moyen de transport plus ou moins régulier et l’année dernière, en 2018, le chiffre pouvait même atteindre 200 000 personnes.

Plusieurs fois dans ma vie, j’ai eu cette impression étrange que les grandes villes sont comme des organismes vivants. Ce sentiment devient particulièrement vivace lorsque j’ai l’occasion d’observer une grande ville la nuit, ou même mieux, à l’aube, à partir d’un point d’observation élevé. En 2013, j’ai eu l’occasion de contempler de cette façon le panorama de Madrid, lorsque la ville se réveillait. L’impression que je vois une énorme bête qui s’étire et dont le sang (le flux de trafic routier) commence à couler plus vite dans les veines était si poignante que j’avais presque envie de tendre la main et de caresser la crinière du géant, faite d’un alignement des hauts immeubles. Une ville relâche donc un flux des stimulants : plus d’automobiles dans les rues et donc plus de densité de trafic accompagnés de plus des sentiers cyclistes et donc plus de confort de déplacement à vélo. Remarquez : une géographie concrète de trafic routier et des sentiers cyclistes, en vue d’oiseau et aussi en une vue mathématique probabiliste, c’est comme un nuage d’infrastructure qui se superpose à un nuage des personnes en mouvement.

Les habitants répondent sélectivement à ce flux des stimulants en accomplissant un changement progressif dans leurs styles de vie. Voilà donc qu’une fois de plus je réfléchis sur le concept d’intelligence collective et je suis de plus en plus enclin à la définir selon les grandes lignes de la théorie d’essaim. Consultez « Ensuite, mon perceptron réfléchit » ou bien « Joseph et le perceptron » pour en savoir plus sur cette théorie. Je définis donc l’intelligence collective comme l’action collective coordonnée par la production et dissémination d’un agent systémique similaire à une hormone, qui transmet l’information d’une façon semi-visée, où le destinataire de l’information est défini par la compatibilité de ses facultés perceptives avec les propriétés de l’agent systémique-même. Tout membre de la société qui possède les caractéristiques requises peut « lire » l’information transmise par l’agent systémique. Les marchés financiers me viennent à l’esprit comme l’exemple les plus illustratif d’un tel mécanisme, mais nous pouvons chercher cette composante « hormonale » dans tout comportement social. Tenez, le mariage. Dans notre comportement conjugal il peut y avoir des composantes – des petites séquences comportementales récurrentes – dont la fonction est de communiquer quelque chose à notre environnement social au sens large et ainsi provoquer certains comportements chez des personnes dont nous ne savons rien.

Je reviens vers de sujets un peu moins compliqués que le mariage, donc vers le marché de l’énergie. Je me dis que si je veux étudier ce marché comme un cas d’intelligence collective, il faut que j’identifie un ou plusieurs agents systémiques. L’argent et les instruments financiers sont, une fois de plus, des candidats évidents. Il peut y en avoir d’autres. Voilà que je peux esquisser l’utilité pratique de ma recherche sur l’application de l’intelligence artificielle pour simuler l’intelligence collective. Le truc le plus évident qui me vient à l’esprit c’est la simulation des politiques climatiques. Tenez, par exemple l’idée de ces chercheurs des États-Unis, surtout du côté de Stanford University, en ce qui concerne une capture profitable du carbone (Sanchez et al. 2018[3] ; Jackson et al. 2019[4]). Jackson et al prennent un angle original. Ils assument que l’humanité produit du dioxyde de carbone et du méthane, qui sont tous les deux des gaz à effet de serre, seulement le méthane, ça serre 84 fois plus que le dioxyde de carbone. Si on convertit le méthane en dioxyde de carbone, on change un agent nocif plus puissant en un agent beaucoup plus faible. Toujours ça de gagné et en plus, Jackson et al déclarent d’avoir mis au point une méthode profitable de capter le méthane produit dans l’élevage des bovins et le transformer en dioxyde de carbone, à travers l’utilisation de la zéolithe. La zéolithe est une structure cristalline rigide d’aluminosilicate, avec des cations et des molécules d’eau dans les espaces libres. Le méthane généré dans l’élevage est pompé, à travers un système des ventilateurs et des grandes plaques poreuses de zéolithe. La zéolithe agit comme un filtre, qui « casse » les molécules de méthane des molécules de dioxyde de carbone.

Jackson et al suggèrent que leur méthode peut être exploitée à profit. Il y a un petit « mais » : à profit veut dire « à condition » est la condition c’est un marché des compensations carbone où le prix d’une tonne serait d’au moins $500. Je jette un coup d’œil sur le marché des compensations carbone tel qu’il est maintenant, selon le rapport publié par la Banque Mondiale : « State and Trends of Carbon Pricing 2018 ». Le marché se développe assez vite. En 2005, toutes les initiatives des compensations carbone dans le monde correspondaient à environ 4% de l’émission totale des gaz de serre. En 2018, ça faisait déjà quelques 14%, avec près de 20% à espérer en 2020. Seulement côté prix, le max des max, soit l’impôt Suédois sur les émissions, ça faisait $139 par tonne. La médiane des prix semble être entre $20 et $25. Très loin des $500 par tonne dont la méthode de Jackson et al a besoin pour être profitable.

Sanchez et al (2018) prennent une approche différente. Ils se concentrent sur des technologies – ou plutôt des ensembles complexes des technologies dans des industries mutuellement intégrées – qui rendent possible la vente du CO2 produit dans l’une de ces industries à l’autre. Le marché industriel du dioxyde de carbone – par exemple dans la production de la bière – est estimé à quelques 80 tonnes par an de CO2 liquide. Pas vraiment énorme – une centaine des cyclistes reconvertis comme moi font l’affaire – mais c’est toujours quelque chose de gagné.           

Ces idées que je viens de mentionner peuvent un jour se composer en des politiques publiques et alors il sera question de leur efficacité tout comme à présent nous nous posons des questions sur l’efficacité des soi-disant « politiques climatiques ». Vue mathématiquement, toute politique est un ensemble des variables, structurées en des résultats espérés d’une part et les outils ainsi que des déterminantes externes d’autre part. Cette perspective rend possible l’expression des politiques comme algorithmes d’intelligence artificielle. Les résultats c’est ce que nous voulons avoir. Disons que ce que nous voulons est une efficience énergétique « EE » – donc le coefficient du PIB divisé par la quantité d’énergie consommée – plus grande de 20% du niveau présent. Nous savons qu’EE dépend d’un ensemble de « » facteurs, dont nous contrôlons certains pendant qu’il est raisonnable d’en considérer d’autres comme exogènes.

J’ai donc une équation dans le style : EE = f(x1, x2, …, xn). Dans ce que nous pouvons appeler calcul stochastique classique il est question de chercher une expression linéaire la plus précise possible de la fonction f(x1, x2, …, xn), soit quelque chose comme EE = a1*x1 + a2*x2 + … + an*xn. Cette approche sert à déterminer quelle serait la valeur la plus probable d’EE avec un vecteur donné des conditions (x1, x2, …, xn). Cette tendance centrale est basée sur la loi de Vue sous un autre angle, la même politique peut s’exprimer comme un ensemble de plusieurs états hypothétiques et équiprobables de nature, donc plusieurs configurations probables de (x1, x2, …, xn) qui pourraient accompagner cette efficience énergétique désirée d’EE(t1) = 1,2*EE(t0). C’est alors que l’intelligence artificielle peut servir (consultez, par exemple « Existence intelligente et pas tout à fait rationnelle »)

Je me demande comment interpréter ces phénomènes et mon esprit s’aventure dans une région adjacente : la bouffe. Pardon, je voulais dire : l’agriculture. Il y a une différence nette entre l’Europe Septentrionale et l’Europe Méridionale, en ce qui concerne l’agriculture. Par l’Europe Méridionale je comprends surtout les grandes péninsules méditerranéennes : l’Ibérique, l’Apennine et le Péloponnèse. L’Europe du Nord, c’est tout ce qui se trouve plus loin de la Méditerranée. Dans le Sud, il y a beaucoup moins de production animale et la production végétale est centrée sur les fruits, avec relativement peu de plantes céréalières et peu des légumes-racines (pommes de terre, betteraves etc.). Dans le Nord de l’Europe, c’est presque exactement l’inverse : l’agriculture est dominée par les céréales, les légumes-racine et la production animale.

Les céréales et les légumes-racines, ça pousse vite. Je peux décider pratiquement d’année en année de l’utilisation exacte d’un champ donné. Les betteraves ou le blé, je peux les déplacer d’un champ à l’autre, d’année en année, presque sans encombre. Qui plus est, dans l’agriculture européenne traditionnelle du Nord, c’est ce qu’on était supposé de faire : de la rotation des cultures, appelée aussi « système d’assolement ». En revanche, les arbres fruitiers, ça pousse lentement. Il faut attendre des années avant qu’une plantation nouvelle soit mûre pour la production. Il est hors de question de déplacer des plantations fruitières d’une saison agriculturale à l’autre. Le modèle du Nord donne donc plus de flexibilité en termes d’aménagement du sol arable. Cette flexibilité va plus loin. La récolte des céréales, ça peut se diviser d’une façon élastique entre plusieurs applications : tant pour la consommation courante humaine, tant pour consommation humaine future, tant pour le fourrage et tant pour le semis l’année prochaine. Pour les légumes-racines, c’est un peu plus compliqué. Pour les patates, la meilleure solution c’est de replanter une pomme de terre déjà récoltée : elle sera plus prévisible.

Pour les carottes, il faut récolter les graines séparément et les replanter après. En tout, les cultures végétales du Nord, ça se conserve bien et ça se rend à des utilisations multiples.

En revanche, dans le Sud et ses cultures fruitières dominantes, c’est différent. Les fruits, avec l’exception des très succulents – comme les citrouilles ou les courges – ça se conserve mal hors d’une chambre froide et c’est l’une des raisons pourquoi il est problématique de nourrir des animaux de ferme avec. Voilà le point suivant : le Nord de l’Europe, ça abonde en élevage animal et donc en protéines et graisses animales. Tous les deux sont très nutritifs et en plus, la graisse animale, ça conserve bien les protéines animales. Eh oui, c’est la raison d’être du saucisson : les acides gras saturés, puisqu’ils sont saturés et donc dépourvus des liens chimiques libres, fonctionnent comme un ralentisseur des réactions chimiques. Un saucisson c’est de la viande (protéines) enveloppée dans de la graisse animale, qui empêche lesdites protéines de s’engager dans des liaisons douteuses avec l’oxygène.

En plus des protéines et de la graisse, les animaux de ferme, ils chient partout et donc ils engraissent. Les bactéries intestinales de la vache, ainsi que ses enzymes digestifs, travaillent pour le bien commun de la vache, de l’agriculteur et des cultures végétales. Une betterave moyenne, ça a tout intérêt à vivre à proximité d’une vache plutôt que de choisir une carrière solo. Voilà donc une chaîne intéressante : l’agriculture végétale dominée par les céréales et les légumes-racines favorise l’agriculture animale poussée qui, à son tour, favorise des cultures végétales à croissance rapide et à hautes exigences nutritives en termes de sol, donc des céréales et des légumes-racines etc. L’agriculture végétale du Sud, dominée par les arbres fruitiers, reste largement indépendante de l’agriculture animale. Cette dernière, dans le Sud, se concentre sur les chèvres et les moutons, qui ont besoin surtout des pâturages naturels.

En termes de productivité nutritive, le modèle du Nord bat celui du Sud par plusieurs longueurs. Ces deux modèles différents sont liés à deux géographies différentes. Le Nord de l’Europe est plus plat, plus froid, plus humide et doté des sols plus riches que le Sud. Plus de bouffe veut dire plus de monde par kilomètre carré, plus d’industrie, plus de trafic routier et tout ça, pris ensemble avec l’élevage intensif, veut dire plus de pollution par nitrogène. Cette dernière a une propriété intéressante : elle agit comme de l’engraissage permanent. Comme la pollution par nitrogène n’est pas vraiment contrôlée, cet engraissage involontaire va surtout aux espèces végétales qui ont le plus de potentiel de captage : les arbres. Récemment, j’ai eu une discussion avec un chercheur de l’Université Agriculturale de Krakow, Pologne, qui m’a carrément assommé avec le fait suivant : dû à la pollution par nitrogène, en Pologne, on a chaque année un surplus d’environ 30 millions de mètres cubes d’arbres vivants et on ne sait pas vraiment quoi en faire. Comme nous avons des sécheresses épisodiques de plus en plus fréquentes, ce surplus d’arbres a un effet pervers : les arbres sont aussi les plus efficaces à capter l’eau et durant une sécheresse ils battent toutes les autres plantes à cette discipline.  

Le système agricultural du Nord, à travers une chaîne causale étrange, contribue à reconstruire ce que le Nord a toujours eu tendance à surexploiter : les forêts. Une hypothèse folle germe dans mon esprit. Durant le XVIIIème et la première moitié du XIXème siècle, nos ancêtres Européens avaient gravement épuisé la substance forestière du continent. À partir de la seconde moitié du XIXème siècle, ils avaient commencé à exploiter de plus en plus les carburants fossiles et donc à produire de plus en plus de pollution locale en dioxyde de nitrogène. Par conséquent, ils avaient entamé un processus qui, des décennies plus tard, contribue à reconstruire la masse forestière du continent. Est-il concevable que notre aventure avec les carburants fossiles est une action collectivement intelligente visant à reconstruire les forêts ? Fou, n’est-ce pas ? Oui, bien sûr, par la même occasion, nous avons pompé des tonnes de carbone dans l’atmosphère de la planète, mais que puis-je vous dire : être intelligent ne veut pas nécessairement dire être vraiment prévoyant.

Quelles analogies entre ces modèles d’agriculture et les systèmes énergétiques, tels que je les ai passés en revue dans « Lean, climbing trends » ? Dans les deux cas, il y a une composante de croissance plus ou moins stable – plus de kilocalories par jour par personne, ainsi que plus de personnes qui mangent à leur faim dans le cas de l’agriculture, plus de kilogrammes d’équivalent pétrole par année par personne et plus de personnes avec accès à l’électricité dans le cas de l’énergie – accompagnée par des ensembles hétérogènes d’essais et erreurs côté production. Ces essais et erreurs semblent partager une caractéristique commune : ils forment des bases productives complexes. Un système énergétique concentré exclusivement sur une seule source d’énergie, par exemple que du photovoltaïque, semble tout aussi déséquilibré qu’un système agricultural qui ne cultive qu’une seule espèce végétale ou animale, comme que du mouton ou que du maïs. 

Je continue à vous fournir de la bonne science, presque neuve, juste un peu cabossée dans le processus de conception. Je vous rappelle que vous pouvez télécharger le business plan du projet BeFund (aussi accessible en version anglaise). Vous pouvez aussi télécharger mon livre intitulé “Capitalism and Political Power”. Je veux utiliser le financement participatif pour me donner une assise financière dans cet effort. Vous pouvez soutenir financièrement ma recherche, selon votre meilleur jugement, à travers mon compte PayPal. Vous pouvez aussi vous enregistrer comme mon patron sur mon compte Patreon . Si vous en faites ainsi, je vous serai reconnaissant pour m’indiquer deux trucs importants : quel genre de récompense attendez-vous en échange du patronage et quelles étapes souhaitiez-vous voir dans mon travail ? Vous pouvez me contacter à travers la boîte électronique de ce blog : .

[1] dernier accès 26 Mars 2019

[2] dernier accès 26 Mars 2019

[3] Sanchez, D. L., Johnson, N., McCoy, S. T., Turner, P. A., & Mach, K. J. (2018). Near-term deployment of carbon capture and sequestration from biorefineries in the United States. Proceedings of the National Academy of Sciences, 115(19), 4875-4880.

[4] R. B. Jackson et al. Methane removal and atmospheric restoration, Nature Sustainability (2019). DOI: 10.1038/s41893-019-0299-x

Lean, climbing trends

My editorial on You Tube

Our artificial intelligence: the working title of my research, for now. Volume 1: Energy and technological change. I am doing a little bit of rummaging in available data, just to make sure I keep contact with reality. Here comes a metric: access to electricity in the world, measured as the % of total human population[1]. The trend line looks proudly ascending. In 2016, 87,38% of mankind had at least one electric socket in their place. Ten years earlier, by the end of 2006, they were 81,2%. Optimistic. Looks like something growing almost linearly. Another one: « Electric power transmission and distribution losses »[2]. This one looks different: instead of a clear trend, I observe something shaking and oscillating, with the width of variance narrowing gently down, as time passes. By the end of 2014 (last data point in this dataset), we were globally at 8,25% of electricity lost in transmission. The lowest coefficient of loss occurred in 1998: 7,13%.

I move from distribution to production of electricity, and to its percentage supplied from nuclear power plants[3]. Still another shape, that of a steep bell with surprisingly lean edges. Initially, it was around 2% of global electricity supplied by the nuclear. At the peak of fascination, it was 17,6%, and at the end of 2014, we went down to 10,6%. The thing seems to be temporarily stable at this level. As I move to water, and to the percentage of electricity derived from the hydro[4], I see another type of change: a deeply serrated, generally descending trend. In 1971, we had 20,2% of our total global electricity from the hydro, and by the end of 2014, we were at 16,24%. In the meantime, it looked like a rollercoaster. Yet, as I am having a look at other renewables (i.e. other than hydroelectricity) and their share in the total supply of electricity[5], the shape of the corresponding curve looks like a snake, trying to figure something out about a vertical wall. Between 1971 and 1988, the share of those other renewables in the total electricity supplied moved from 0,25% to 0,6%. Starting from 1989, it is an almost perfectly exponential growth, to reach 6,77% in 2015. 

Just to have a complete picture, I shift slightly, from electricity to energy consumption as a whole, and I check the global share of renewables therein[6]. Surprise! This curve does not behave at all as it is expected to behave, after having seen the previously cited share of renewables in electricity. Instead of a snake sniffing a wall, we can see a snake like from above, or something like e meandering river. This seems to be a cycle over some 25 years (could it be Kondratiev’s?), with a peak around 18% of renewables in the total consumption of energy, and a trough somewhere by 16,9%. Right now, we seem to be close to the peak. 

I am having a look at the big, ugly brother of hydro: the oil, gas and coal sources of electricity and their share in the total amount of electricity produced[7]. Here, I observe a different shape of change. Between 1971 and 1986, the fossils dropped their share from 62% to 51,47%. Then, it rockets up back to 62% in 1990. Later, a slowly ascending trend starts, just to reach a peak, and oscillate for a while around some 65 ÷ 67% between 2007 and 2011. Since then, the fossils are dropping again: the short-term trend is descending.  

Finally, one of the basic metrics I have been using frequently in my research on energy: the final consumption thereof, per capita, measured in kilograms of oil equivalent[8]. Here, we are back in the world of relatively clear trends. This one is ascending, with some bumps on the way, though. In 1971, we were at 1336,2 koe per person per year. In 2014, it was 1920,655 koe.

Thus, what are all those curves telling me? I can see three clearly different patterns. The first is the ascending trend, observable in the access to electricity, in the consumption of energy per capita, and, since the late 1980ies, in the share of electricity derived from renewable sources. The second is a cyclical variation: share of renewables in the overall consumption of energy, to some extent the relative importance of hydroelectricity, as well as that of the nuclear. Finally, I can observe a descending trend in the relative importance of the nuclear since 1988, as well as in some episodes from the life of hydroelectricity, coal and oil.

On the top of that, I can distinguish different patterns in, respectively, the production of energy, on the one hand, and its consumption, on the other hand. The former seems to change along relatively predictable, long-term paths. The latter looks like a set of parallel, and partly independent experiments with different sources of energy. We are collectively intelligent: I deeply believe that. I mean, I hope. If bees and ants can be collectively smarter than singlehandedly, there is some potential in us as well.

Thus, I am progressively designing a collective intelligence, which experiments with various sources of energy, just to produce those two, relatively lean, climbing trends: more energy per capita and ever growing a percentage of capitae with access to electricity. Which combinations of variables can produce a rationally desired energy efficiency? How is the supply of money changing as we reach different levels of energy efficiency? Can artificial intelligence make energy policies? Empirical check: take a real energy policy and build a neural network which reflects the logical structure of that policy. Then add a method of learning and see, what it produces as hypothetical outcome.

What is the cognitive value of hypotheses made with a neural network? The answer to this question starts with another question: how do hypotheses made with a neural network differ from any other set of hypotheses? The hypothetical states of nature produced by a neural network reflect the outcomes of logically structured learning. The process of learning should represent real social change and real collective intelligence. There are four most important distinctions I have observed so far, in this respect: a) awareness of internal cohesion b) internal competition c) relative resistance to new information and d) perceptual selection (different ways of standardizing input data).

The awareness of internal cohesion, in a neural network, is a function that feeds into the consecutive experimental rounds of learning the information on relative cohesion (Euclidean distance) between variables. We assume that each variable used in the neural network reflects a sequence of collective decisions in the corresponding social structure. Cohesion between variables represents the functional connection between sequences of collective decisions. Awareness of internal cohesion, as a logical attribute of a neural network, corresponds to situations when societies are aware of how mutually coherent their different collective decisions are. The lack of logical feedback on internal cohesion represents situation when societies do not have that internal awareness.

As I metaphorically look around and ask myself, what awareness do I have about important collective decisions in my local society. I can observe and pattern people’s behaviour, for one. Next thing: I can read (very literally) the formalized, official information regarding legal issues. On the top of that, I can study (read, mostly) quantitatively formalized information on measurable attributes of the society, such as GDP per capita, supply of money, or emissions of CO2. Finally, I can have that semi-formalized information from what we call “media”, whatever prefix they come with: mainstream media, social media, rebel media, the-only-true-media etc.

As I look back upon my own life and the changes which I have observed on those four levels of social awareness, the fourth one, namely the media, has been, and still is the biggest game changer. I remember the cultural earthquake in 1990 and later, when, after decades of state-controlled media in the communist Poland, we suddenly had free press and complete freedom of publishing. Man! It was like one of those moments when you step out of a calm, dark alleyway right into the middle of heavy traffic in the street. Information, it just wheezed past.         

There is something about media, both those called ‘mainstream’, and the modern platforms like Twitter or You Tube: they adapt to their audience, and the pace of that adaptation is accelerating. With Twitter, it is obvious: when I log into my account, I can see the Tweets only from people and organizations whom I specifically subscribed to observe. With You Tube, on my starting page, I can see the subscribed channels, for one, and a ton of videos suggested by artificial intelligence on the grounds of what I watched in the past. Still, the mainstream media go down the same avenue. When I go, the types of news presented are very largely what the editorial team hopes will max out on clicks per hour, which, in turn, is based on the types of news that totalled the most clicks in the past. The same was true for printed newspapers, 20 years ago: the stuff that got to headlines was the kind of stuff that made sales.

Thus, when I simulate collective intelligence of a society with a neural network, the function allowing the network to observe its own, internal cohesion seems to be akin the presence of media platforms. Actually, I have already observed, many times, that adding this specific function to a multi-layer perceptron (type of neural network) makes that perceptron less cohesive. Looks like a paradox: observing the relative cohesion between its own decisions makes a piece of AI less cohesive. Still, real life confirms that observation. Social media favour the phenomenon known as « echo chamber »: if I want, I can expose myself only to the information that minimizes my cognitive dissonance and cut myself from anything that pumps my adrenaline up. On a large scale, this behavioural pattern produces a galaxy of relatively small groups encapsulated in highly distilled, mutually incoherent worldviews. Have you ever wondered what it would be to use GPS navigation to find your way, in the company of a hardcore flat-Earther?   

When I run my perceptron over samples of data regarding the energy – efficiency of national economies – including the function of feedback on the so-called fitness function is largely equivalent to simulating a society with abundant mediatic activity. The absence of such feedback is, on the other hand, like a society without much of a media sector.

Internal competition, in a neural network, is the deep underlying principle for structuring a multi-layer perceptron into separate layers, and manipulating the number of neurons in each layer. Let’s suppose I have two neural layers in a perceptron: A, and B, in this exact order. If I put three neurons in the layer A, and one neuron in the layer B, the one in B will be able to choose between the 3 signals sent from the layer A. Seen from the A perspective, each neuron in A has to compete against the two others for the attention of the single neuron in B. Choice on one end of a synapse equals competition on the other end.

When I want to introduce choice in a neural network, I need to introduce internal competition as well. If any neuron is to have a choice between processing input A and its rival, input B, there must be at least two distinct neurons – A and B – in a functionally distinct, preceding neural layer. In a collective intelligence, choice requires competition, and there seems to be no way around it.  In a real brain, neurons form synaptic sequences, which means that the great majority of our neurons fire because other neurons have fired beforehand. We very largely think because we think, not because something really happens out there. Neurons in charge of early-stage collection in sensory data compete for the attention of our brain stem, which, in turn, proposes its pre-selected information to the limbic system, and the emotional exultation of the latter incites he cortical areas to think about the whole thing. From there, further cortical activity happens just because other cortical activity has been happening so far.

I propose you a quick self-check: think about what you are thinking right now, and ask yourself, how much of what you are thinking about is really connected to what is happening around you. Are you thinking a lot about the gradient of temperature close to your skin? No, not really? Really? Are you giving a lot of conscious attention to the chemical composition of the surface you are touching right now with your fingertips? Not really a lot of conscious thinking about this one either? Now, how much conscious attention are you devoting to what [fill in the blank] said about [fill in the blank], yesterday? Quite a lot of attention, isn’t it?

The point is that some ideas die out, in us, quickly and sort of silently, whilst others are tough survivors and keep popping up to the surface of our awareness. Why? How does it happen? What if there is some kind of competition between synaptic paths? Thoughts, or components thereof, that win one stage of the competition pass to the next, where they compete again.           

Internal competition requires complexity. There needs to be something to compete for, a next step in the chain of thinking. A neural network with internal competition reflects a collective intelligence with internal hierarchies that offer rewards. Interestingly, there is research showing that greater complexity gives more optimizing accuracy to a neural network, but just as long as we are talking about really low complexity, like 3 layers of neurons instead of two. As complexity is further developed, accuracy decreases noticeably. Complexity is not the best solution for optimization: see Olawoyin and Chen (2018[9]).

Relative resistance to new information corresponds to the way that an intelligent structure deals with cognitive dissonance. In order to have any cognitive dissonance whatsoever, we need at least two pieces of information: one that we have already appropriated as our knowledge, and the new stuff, which could possibly disturb the placid self-satisfaction of the I-already-know-how-things-work. Cognitive dissonance is a potent factor of stress in human beings as individuals, and in whole societies. Galileo would have a few words to say about it. Question: how to represent in a mathematical form the stress connected to cognitive dissonance? My provisional answer is: by division. Cognitive dissonance means that I consider my acquired knowledge as more valuable than new information. If I want to decrease the importance of B in relation to A, I divide B by a factor greater than 1, whilst leaving A as it is. The denominator of new information is supposed to grow over time: I am more resistant to the really new stuff than I am to the already slightly processed information, which was new yesterday. In a more elaborate form, I can use the exponential progression (see The really textbook-textbook exponential growth).

I noticed an interesting property of the neural network I use for studying energy efficiency. When I introduce choice, internal competition and hierarchy between neurons, the perceptron gets sort of wild: it produces increasing error instead of decreasing error, so it basically learns how to swing more between possible states, rather than how to narrow its own trial and error down to one recurrent state. When I add a pinchful of resistance to new information, i.e. when I purposefully create stress in the presence of cognitive dissonance, the perceptron calms down a bit, and can produce a decreasing error.   

Selection of information can occur already at the level of primary perception. I developed on this one in « Thinking Poisson, or ‘WTF are the other folks doing?’ ». Let’s suppose that new science comes as for how to use particular sources of energy. We can imagine two scenarios of reaction to that new science. On the one hand, the society can react in a perfectly flexible way, i.e. each new piece of scientific research gets evaluated as for its real utility for energy management, and gest smoothly included into the existing body of technologies. On the other hand, the same society (well, not quite the same, an alternative one) can sharply distinguish those new pieces of science into ‘useful stuff’ and ‘crap’, with little nuance in between.

What do we know about collective learning and collective intelligence? Three essential traits come to my mind. Firstly, we make social structures, i.e. recurrent combinations of social relations, and those structures tend to be quite stable. We like having stable social structures. We almost instinctively create rituals, rules of conduct, enforceable contracts etc., thus we make stuff that is supposed to make the existing stuff last. An unstable social structure is prone to wars, coups etc. Our collective intelligence values stability. Still, stability is not the same as perfect conservatism: our societies have imperfect recall. This is the second important trait. Over (long periods of) time we collectively shake off, and replace old rules of social games with new rules, and we do it without disturbing the fundamental social structure. In other words: stable as they are, our social structures have mechanisms of adaptation to new conditions, and yet those mechanisms require to forget something about our past. OK, not just forget something: we collectively forget a shitload of something. Thirdly, there had been many local human civilisations, and each of them had eventually collapsed, i.e. their fundamental social structures had disintegrated. The civilisations we have made so far had a limited capacity to learn. Sooner or later, they would bump against a challenge which they were unable to adapt to. The mechanism of collective forgetting and shaking off, in every known historically documented case, had a limited efficiency.

I intuitively guess that simulating collective intelligence with artificial intelligence is likely to be the most fruitful when we simulate various capacities to learn. I think we can model something like a perfectly adaptable collective intelligence, i.e. the one which has no cognitive dissonance and processes information uniformly over time, whilst having a broad range of choice and internal competition. Such a neural network behaves in the opposite way to what we tend to associate with AI: instead of optimizing and narrowing down the margin of error, it creates new alternative states, possibly in a broadening range. This is a collective intelligence with lots of capacity to learn, but little capacity to steady itself as a social structure. From there, I can muzzle the collective intelligence with various types of stabilizing devices, making it progressively more and more structure-making, and less flexible. Down that avenue, the solver-type of artificial intelligence lies, thus a neural network that just solves a problem, with one, temporarily optimal solution.

I am consistently delivering good, almost new science to my readers, and love doing it, and I am working on crowdfunding this activity of mine. You can communicate with me directly, via the mailbox of this blog: As we talk business plans, I remind you that you can download, from the library of my blog, the business plan I prepared for my semi-scientific project Befund  (and you can access the French version as well). You can also get a free e-copy of my book ‘Capitalism and Political Power’ You can support my research by donating directly, any amount you consider appropriate, to my PayPal account. You can also consider going to my Patreon page and become my patron. If you decide so, I will be grateful for suggesting me two things that Patreon suggests me to suggest you. Firstly, what kind of reward would you expect in exchange of supporting me? Secondly, what kind of phases would you like to see in the development of my research, and of the corresponding educational tools?

[1] last access May 17th, 2019

[2] last access May 17th, 2019

[3] last access May 17th, 2019

[4] last access May 17th, 2019

[5] last access May 17th, 2019

[6] last access May 17th, 2019

[7] last access May 17th, 2019

[8] last access May 17th, 2019

[9] Olawoyin, A., & Chen, Y. (2018). Predicting the Future with Artificial Neural Network. Procedia Computer Science, 140, 383-392.